توانایی بیوکنترل سویه‌های Pseudomonas fluorescens مولد 2و4-دی استیل فلوروگلوسینول و سیانید‌هیدروژن علیه پژمردگی فوزاریومی گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه خلیج فارس، بوشهر

2 استادیار، گروه اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه خلیج فارس، بوشهر

چکیده

سودوموناس‌های فلورسنت مولد 2و4-دی­استیل فلوروگلوسینول(DAPG)  در بیوکنترل بسیاری بیماری‌های قارچی گیاهان نقش دارند. پژمردگی فوزاریومی گوجه­فرنگی یکی از مهمترین بیماری‌های این گیاه است که خسارت زیادی را به محصول وارد می­آورد. در این پژوهش 35 سویه Pseudomonas fluorescens از نظر وجود ژن‌های phlD و hcnAB بررسی شده و مشخص گردید نه سویه واجد ژن‌های بیوکنترل بودند. توانایی آنتاگونیستی سویه­های واجد دو ژن همراه با سویه CHA0، علیه بیمارگر در شرایط آزمایشگاهی بررسی گردید و پنج سویه شامل PGU، PGU1، PGU2، PGU4 و سویه CHA0 انتخاب شدند. سویه­ها از نظر تولید انواع متابولیت‌های ضدمیکروبی یا محرک رشدی گیاهی آزمایش شدند و در مرحله بعد توانایی آنها در بیوکنترل بیماری و افزایش رشد گیاه گوجه­فرنگی در شرایط گلخانه مطالعه شد. نتایج آزمایشگاهی نشان داد که سویه­ها قادر به تولید آنتی­بیوتیک‌های DAPG، پایولوتورین و مونواستیل فلوروگلوسینول، سیانید­هیدروژن، اندول استیک­اسید، پروتئاز و سیدروفور پایووردین و نیز انحلال فسفات معدنی بودند. این سویه­ها در شرایط گلخانه نیز به‌طور معنی­داری قادر به کنترل بیماری و تحریک رشد گیاه گوجه‌فرنگی بودند و سویه PGU بهتر از سایرین عمل نمود. این مطالعه پیشنهاد می­کند که احتمالاً تولید متابولیت‌های ضد­میکروبی و/ یا متابولیت‌های محرک رشد گیاه در کنترل بیماری و افزایش شاخص‌های رشدی گوجه­فرنگی در شرایط گلخانه مؤثر هستند. 

کلیدواژه‌ها

موضوعات


Abo-Elyousr KAM, Mohamed HM (2009). Biological control of Fusarium wilt in tomato by plant Growth-promoting yeast and Rhizobacteria. Plant Pathology Journal 25(2):199-204.
Alström A, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils 7: 232-238.
Amini K (2009). Physiological race of Fusarium oxysporum f. sp. Lycopersici in Kurdistan Provice of Iran and reaction of some tomato cultivars to race 1 of pathogen. Plant Pathology 8: 68-73.
Beckman CH (1987) The nature of wilt diseases of plants. APS Press, St Paul, MN.
Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173: 170-177.
Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied and Environmental Microbiology 62: 865-871.
Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucionol in biocontrol agent Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology 72: 418-427.
Castric PA (1977) Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. Journal of Bacteriology 130: 826-831.
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34: 33-41.
De La Fuente L, Thomashow L, Weller D, Bajsa N, Quagliotto L, Chernin L, Arias A (2004) Pseudomonas fluorescens UP61 isolated from birds foot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. European Journal of Plant Pathology 110: 671-681.
De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux J, Höfte M (1999). Nanogram amount of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Molecular Plant-Microbe Interaction 12: 450-458.
De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93: 966-975.
De Werra P,Péchy-Tarr M,Keel C,Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology75(12): 4162-74.
Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Applied and Environmental Microbiology 70(3): 1836-1842. 
Fakhouri W, Buchenauer H (2002) Characteristics of fluorescent pseudomonad isolates towards controlling of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Journal of Plant diseases and Protection 110 (2): 143-156.
Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Molecular Plant-Microbe Interaction 9: 642-645.
Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3: 307-319.
Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology 41: 117-153.
Hagedorn C, Gould WD, Bardinelli TR (1998) Rhizobacteria of cotton and their repression of seedling disease pathogens. Applied and Environmental Microbiology 55: 2793-2797.
Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Systematic and Applied Microbiology 28(1): 66-76.
Iavicoli A, Boutet E, Buchala A, Métraux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interaction 16: 851-858.
Jamali F (2009) Influence of some biotic factors on the expression of hydrogen cyanide- and 2,4-diacetylphloroglucinol biosynthesis genes in Pseudomonas fluorescens on bean rhizosphere, Ph. D. thesis in Plant pathology, College of Agriculture, Tehran University. (in Persian)
Jamali F, Bayat F (2015) Phenotypic and genotypic study of Pseudomonas fluorescens strain PGU0 and assessment of its biocontrol against Rhizoctonia solani, the causal agent of bean damping- off. Biological Control of Pests and Plant Diseases 4 (1): 37-46.
Keel C, Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: Mechanisms and ecological impact. In: Gange AC, Brown VK (eds.), Multitrophic Interactions in terrestrial Systems, the 36th symposium of the British Ecological Society, Royal Holloway College, university of London, Blackwell Science, Oxford. pp. 27-46.
Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interaction 5(1): 4-13.
Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology 62: 552-563.
Kloepper JW, Gutierrez-Estrada A, Mclnroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Microbiology 53(2): 159-167.
Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinolproducing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology 68: 3226-3237.
Larkin RP, Fravel, DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease 82: 1022–1028.
Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology 180(12): 3187-3196.
Lucy M, Reed E, Glick BR (2004). Application of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1-25.
Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environmental Microbiology 1: 9-13.
Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress, but not cucumber. European Journal of Plant Pathology100: 221-232.
Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens CHA0 with enhanced antibiotic production. Plant Pathology 44: 40-50.
Maurhofer M, Keel C, Schnider U, Voisard C, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82: 190-195.
Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88: 678-684.
Mc Spadden Gardener BB, Mavrodi DV, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 91: 44-54.
Morrissey JP, Abbas A, Mark L, Cullinane M, O’Gara F (2004) Biosynthesis of antifungal metabolites by biocontrol strains of Pseudomonas. In: Ramos JL (ed.), Pseudomonas: Biosynthesis of macromolecules and molecular metabolism, Vol. 3. New York, USA: Kluwer Academic/Plenum Publishers, pp. 635-670.
Moynihan JA, Morrissey JP, Coppoolse ER, Stiekema WJ, O'Gara F, Boyd EF (2009) Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens. Applied and Environmental Microbiology 75(7): 2122-2131.
Patten CL, Glick BR (2002) The role of bacterial indole acetic acid in the development of the host plant root system. Applied and Environmental Microbiology 68: 3795-3801.
Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied and Environmental Microbiology 66: 948-955.
Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology 63: 881-887.
Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321: 305-339.
Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiology156: 989-996.
Rodriguez-Molina M, Medina L, lorres-vila L, cuartero J (2003) Vascular colonization pattern in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f. sp. lycopersici race 0 and 1. Plant pathology 52:199-203.
Rodriguez H, Fraga R, Gonzalez, T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287: 15-21.
Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology 104: 631-643.
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31(4): 425-448.
Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9: 778-781.
Svercel M, Duffy B, Défago G (2007) PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. Journal of Microbiological Methods 70: 209-213.
Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites, In: Stacey G, Keen NT (eds.), Plant-Microbe Interactions, Vol. 1. Chapman and Hall, New York. pp. 187-235.
Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453-483.
Vessey KJ (2003) Plant growth-Promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586.
Viani A, Alizadeh A, Babadoust M, Peighami E (2008) Investigation of Fusarium diseases of tomatoes in East Azarbaijan. Journal of Agricultural Sciences and Natural Resources 14(5):192-206. (in Persian)
Wang C, Ramette A, Pungasamarnwong P, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiology Ecology 37: 105-116.
Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250-256.
Weller DM, Landa BB, Mavrodi OV, Schroeder LL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS (2006) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9(1): 4-20.
Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 309-348.
Zhou T-T, Li C-Y, Chen D, Wu K, Shen Q-R, Shen B (2014) phlF- mutant of Pseudomonas fluorescens J2 improved 2,4-DAPG biosynthesis and biocontrol efficacy against tomato bacterial wilt. Biological Control 78: 1-8.