بررسی اثرات غیرکشندگی باکتری Bacillus thuringiensis روی حلزون Achatina fulica

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

2 گروه گیاهپزشکی ، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

3 گروه گیاه‌پزشکی دانشکده کشاورزی ، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

حلزون  Achatina fulica (Gastropoda, Achatinidae)یکی از مهم‌ترین آفات کشاورزی با انتشار گسترده و دامنه میزبانی وسیع در گیاهان مختلف است. متداول‌ترین روش کنترل این‌گونه، استفاده از حلزون‌کش شیمیایی متالدئید است که اگرچه در کنترل جمعیت کارایی دارد اما اثرات منفی آن برای محیط ‌زیست قطعی است. بنابراین، جستجو برای شیوه‌های جایگزین مانند استفاده از عوامل کنترل بیولوژیک ضروری شده است. باکتری Bacillus thuringiensis (Bt) مهم‌ترین عامل میکروبی برای کنترل حشرات آفت است و برای استفاده از آن در کنترل نرم‌تنان زیان‌آور کشاورزی، به بررسی بیشتری نیاز هست. در پژوهش حاضر، اثر باکتری Bt تهیه شده به صورت فرآورده تجاری در داخل کشور، به دو صورت مستقیم و غیرمستقیم (در حالت اندوفیت) روی حلزون A. fulica بررسی شد. کاهو به عنوان یک میزبان ترجیحی حلزون، در گلخانه کشت و برای تغذیه حلزون مورد استفاده قرار گرفت. برای دستیابی به باکتری در فاز رویشی، از کشت آن روی Nutrient Agar (NA) استفاده شد. پتانسیل اندوفیت شدن Bt با استفاده از روش پاشش روی برگ‌ها و روش آبیاری گیاهان 6 هفته‌ای کاهو از سوسپانسیون باکتری با غلظت معادل  CFU/ml ۱۰8×7/8 ‌ ‏مورد مطالعه قرار گرفت. داده‌های حاصل از 10 روز بعد از تلقیح در خصوص اندوفیت شدن باکتری در برگ‌ها نشان داد که این فرایند فقط با روش پاشش موفق بوده و برگ‌های گیاهانی که با سوسپانسیون باکتریایی از طریق ریشه تیمار شده‌اند، فاقد باکتری اندوفیت است. تأثیر Bt در چند تیمار مختلف با غوطه‌وری برگ‌های کاهو درون سوسپانسیون اسپور-کریستال باکتری (در مقادیر CFU/ml 108× 5 و 109)، درون سوسپانسیون باکتری در فاز رویشی و بدون کریستال (cell/ml 108× 5)، سوسپانسیون باکتری Xanthomonas translucens (شاهد 1) و آب مقطر استریل (شاهد 2) روی افراد بالغ و نابالغ حلزون A. fulica مورد ارزیابی قرار گرفت. نتایج نشان داد که هیچ کدام از تیمارها روی افراد بالغ‌ حلزون‌ اثر قابل مشاهده ندارد اما افراد نابالغ حلزون تیمار شده با غلظت CFU/ml 109 از روز دوم تیمار به بعد و به مدت 21 روز هیچ تغذیه‌ای از برگ‌های کاهو نداشتند. برای تأیید وجود باکتری در دستگاه گوارشی افراد نابالغ که تغذیه را متوقف کرده بودند، در فواصل زمانی 14 و 22 روز پس از تیمار، لوله گوارشی از بدن آنها در شرایط استریل جدا شد. سوسپانسیون حاصل از همگن‌سازی در هاون چینی حاوی آب مقطر استریل، در ظروف پتری حاوی آگار غذایی کشت داده شد. پنج روز بعد از انکوباسیون، وجود اسپور و کریستال‌ Bt تأیید شد. همچنین، بررسی مولکولی وجود باکتری در دستگاه گوارشی با استفاده از PCR و توالی‌یابی ژن 16S rRNA انجام گرفت و هویت باکتری با مقایسه توالی در بانک‌های اطلاعاتی تأیید گردید. با این که مرگ این گونه حلزون با باکتری مورد استفاده، ثبت نشد اما توقف تغذیه مراحل نابالغ به مدت سه هفته، می‌تواند تاثیر بسزایی در کاهش خسارت حلزون داشته باشد.

کلیدواژه‌ها

موضوعات


Extended Abstract

Introduction

The African snail Achatina fulica is a widespread and voracious agricultural pest. It has many host plants. The most common way to control this pest is using chemical pesticides, mainly metaldehyde. However, it is ineffective against the African snail. It also has harmful effects on the environment. Thus, it is very urgent to search for another way of control, for example applying biological agents. Bacillus thuringiensis bacterium is one of the most important component of microbial control that has been well studied as a biocontrol agent against many insect pests. On the other side, this bacterium has not yet been studied in detail as a control agent for agricultural mollusks. In this research, the effect of BT is studied directly and indirectly on the snail A. fullica.

 

Materials and Methods

    Lettuce (Lactuca sativa) was cultivated in a greenhouse and used as snail feed. Various treatments were tested, including: dipping lettuce leaves in Bt suspensions in two different concentrations and phases, Xanthomonas translucens suspension as control 1, and sterile distilled water as Control 2. Eggs, non-adult, and adult snails were assessed. To confirm the presence of the bacterium in the digestive tract of immature individuals that had ceased feeding, the digestive tract was aseptically removed at intervals of 14 and 22 days post-treatment. The suspension obtained from homogenization in a sterile mortar containing sterile distilled water was cultured on nutrient agar plates. Five days after incubation, the presence of Bt spores and crystals was examined. To confirm that the bacteria isolated from the gastrointestinal tract were indeed B. thuringiensis, bacterial DNA was extracted and subjected to PCR amplification. The resulting PCR product was sequenced for analysis. The obtained sequence was then analyzed and compared with existing sequences in NCBI database to ensure accurate identification. Additionally, in a separate experiment, the bacterium was introduced into lettuce plants through irrigation and foliar spray to test the capabilities of internal colonization. For this, 10 days post-inoculation, leaf samples were collected, surface-sterilized, and homogenized, the homogenate was plated and incubated for five days to confirm B. thuringiensis endophytic colonization. After incubation, the presence of Bt-specific spores and crystal proteins was assessed to verify successful colonization.

 

Results

    No visible effects were observed on eggs and adult snails across all treatments. However, non-adult snails treated with the Bt suspension at a concentration of 109 CFU/ml ceased feeding from the second day of treatment onwards and continued for 21 days. Bt presence in the homogenized suspension from the gastrointestinal tracts of non-adult, starved snails was confirmed by the observation of Bt-specific spores and crystal. The bacterial identity was confirmed through sequence analysis of the 16S rRNA gene and comparison with the NCBI-BLAST database. Additionally, the study demonstrated that B. thuringiensis successfully colonized lettuce leaves endophytically when applied through foliar spraying. Ten days post-inoculation, Bt-specific spores and crystals were detected in lettuce leaves treated with a Bt suspension via spraying. In contrast, no evidence of endophytic colonization was observed in plants treated through root drenching, indicating that the method of application significantly influences Bt's ability to colonize lettuce endophytically. The effect of the bacterium in its endophytic ‎state on both adult and non-adult ‎snails is under investigation to study the effect caused by endophytic bacteria through a host plant on the snails.

 

Conclusion

    The findings of the present study illustrate that, though B.  thuringiensis does not have a direct effect on the adult A. fulica, its effect is remarkable at high concentrations on the feeding of non-adult snails. This effect on feeding behavior of snail can result in reduced and delayed development, which can have cascading effects on the overall population dynamics of A. fulica. On the other hand, the capability of Bt to establish an endophytic relationship with lettuce through foliar application enhances new possibilities for its application in integrated pest management systems. This may, therefore, provide a long-term, systemic resistance against pests and hence reduce reliance on periodic chemical applications. The potential of Bt as a biocontrol agent has great implications for sustainable agriculture and should be further studied for its long-term efficacy and various impacts on the different crops and snail species.

 

Abd El-Ghany, A. M., & Abd El-Ghany, N. M. (2017). Molluscicidal activity of Bacillus thuringiensis strains against Biomphalaria alexandrina snails. Beni-Suef University Journal of Basic and Applied Sciences6(4), 391-393.‏
Alicata, J. E. (1991). The discovery of Angiostrongylus cantonensis as a cause of human eosinophilic meningitis. Parasitology Today7(6), 151-153.
Chai, Y. N., Futrell, S., & Schachtman, D. P. (2022). Assessment of bacterial inoculant delivery methods for cereal crops. Front Microbiol 13: 791110.‏
Dikkeboom, R., Van der Knaap, W. P., Meuleman, E. A., & Sminia, T. (1985). A comparative study on the internal defence system of juvenile and adult Lymnaea stagnalis. Immunology55(3), 547.‏
Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins12(7), 430.‏
El-Sabbagh, S. M., Adayel, S. A., Elmasry, S. A., & Alazazy, H. M. (2013). Biological control of some species of land snails infesting citrus trees. New York Science Journal6(7), 5-12.‏
Ester, A., & Nijënstein, J. H. (1995). Control of the field slug Deroceras reticulatum (Müller)(Pulmonata: Limacidae) by pesticides applied to winter wheat seed. Crop Protection14(5), 409-413.‏
Gaber, O. A., Asran, A. E. A., Khider, F. K., El-Shahawy, G., Abdel-Tawab, H., & Elfayoumi, H. M. (2022). Efficacy of biopesticide Protecto (Bacillus thuringiensis)(BT) on certain biochemical activities and histological structures of land snail Monacha cartusiana (Muller, 1774). Egyptian Journal of Biological Pest Control32(1), 1-8.‏
Gerlach, J., Barker, G. M., Bick, C. S., Bouchet, P., Brodie, G., Christensen, C. C., ... & Yeung, N. W. (2021). Negative impacts of invasive predators used as biological control agents against the pest snail Lissachatina fulica: the snail Euglandina ‘rosea’and the flatworm Platydemus manokwariBiological Invasions23, 997-1031.‏
Jurat-Fuentes, J. L., & Crickmore, N. (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of invertebrate pathology142, 5-10.‏
Laznik, Ž., Mihičinac, M., Rupnik, J., Vidrih, M., Igor, P. R. Š. A., & Trdan, S. (2010). Testing the efficacy of different substances against Arion slugs (Arionidae) under laboratory conditions. Acta agriculturae Slovenica95(2), 129-140.
Muru, D. (2021). Magic bullet or shot in the dark? Potential and limits of biological control for experimental ecology (Doctoral dissertation, Université Côte d'Azur).‏
Prociv, P., Spratt, D. M., & Carlisle, M. S. (2000). Neuro-angiostrongyliasis: unresolved issues. International journal for parasitology30(12-13), 1295-1303.
Radwan, M. A., El-Gendy, K. S., & Gad, A. F. (2020). Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. Chemosphere257, 127218.‏‏
Raut, S. K., & Barker, G. M. (2002). Other Achatinidae as Pests in Tropical Agriculture. In Molluscs as crop pests (pp. 55-114). CABI Publishing, CAB International.
Raut, S. K., & Ghose, K. C. (1984). Pestiferous land snails of India. Pestiferous land snails of India.
Rolle, R. L., Ejiofor, A. O., & Johnson, T. L. (2005). Determination of the plasmid size and location of d-endotoxin genes of Bacillus thuringiensis by pulse field gel electrophoresis. African Journal of Biotechnology4(7), 580-585.
Said, S. M., & Ali, S. M. (2018). Effects of bacteria Bacillus thuringiensis (Bt) on the diges‑tive system of the land snail Eobania vermiculataInt J Ecotoxiol Ecobiol3(1), 17-21.
Schneider, K., Breck Davis, B., Tourtois, J., & Hulbert, D. (2021). Insecticidal combinations (WO2021222814A1). WIPO Patent. Retrieved from https://patents.google.com/patent/WO2021222814A1/en
Smith, J. W., & Fowler, G. (2003). Pathway risk assessment for achatinidae with emphasis on the giant african land snail Achatina fulica (Bowdich) and Limicolaria aurora (Jay) from the Caribbean and Brazil, with comments on related taxa Achatina achatina (Linne), and Archachatina marginata (Swainson) intercepted by PPQ. USDA-APHIS. Center for Plant Health Science and Technology (Internal Report).‏
Sultana, R., Jashim, A. I. I., Islam, S. M. N., Rahman, M. H., & Haque, M. M. (2024). Bacterial endophyte Pseudomonas mosselii PR5 improves growth, nutrient accumulation, and yield of rice (Oryza sativa L.) through various application methods. BMC Plant Biology24(1), 1030.‏
Travers, R. S., Martin, P. A., & Reichelderfer, C. F. (1987). Selective process for efficient isolation of soil Bacillus spp. Applied and environmental microbiology53(6), 1263-1266.
Vachon, V., Laprade, R., & Schwartz, J. L. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. Journal of invertebrate pathology111(1), 1-12.‏
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology173(2), 697-703.‏
Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational biology, 7(1-2), 203-214.‏