تولید دو قارچ بیمارگر حشرات، Metarhizium anisopliae و Beauveria bassiana، با استفاده از روش تخمیر دو مرحله‌ای

نوع مقاله : مقاله پژوهشی

نویسنده

گروه تنوع زیستی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.

چکیده

هدف از این تحقیق، تولید آزمایشگاهی دو سویة کارآمد و بومی، Metarhizium anisopliae var. acridum  و Beauveria bassiana Z1  ، با استفاده از روش تخمیر دو مرحله­ای با­کاربرد بسترهای جامد (گندم، برنج پخته، جو، سورگوم و سبوس گندم) به­دنبال بستر مایع (آب پنیر) در دمای 25 درجه سلسیوس بود. حداکثر کنیدی‌های غوطه‌ور به­طور معنی‌دار در 50 میلی‌لیتر آب پنیر در مقایسه با محیط کشت مایع دکستروز آگار تولید­ شد. سپس، بسترهای جامد توسط کنیدی‌های غوطه­­ور بدست­آمده از آب پنیر تلقیح­شدند. پس از 14 روز، یک گرم از هر بستر جامد در 100 میلی­لیتر توئین غوطه­ور ­شد. بیشترین میانگین تعداد کنیدی‌های M. anisopliae در یک میلی‌لیتر از بستر برنج (105×42/2±107×08/1) و سبوس گندم (105×86/1±107×06/1) بدون تفاوت معنی‌دار به­دست­آمد. درصد زنده‌مانی برای تمامی بسترهای جامد به­استثنای سورگوم (90/98 درصد) 100 درصد بود. بیشترین تعداد کنیدی تولید‌شده توسط قارچ B. bassiana روی بستر سبوس گندم مشاهد‌ه ­شد (105×09/1±106×14/5 کنیدی در میلی‌لیتر). کار با گندم که 104×71/3±106×30/4 کنیدی در میلی‌لیتر تولید ‌کرد، بسیار آسان‌تر از سبوس گندم بود. در بستر جو کمترین درصد زنده­مانی (20/39 درصد) مشاهده ­شد. تعداد کنیدی‌ها در یک گرم از قارچ M. anisopliae حاصل از الک‌کردن بستر برنج و قارچ B. bassiana حاصل الک‌کردن بستر گندم، به ترتیب 1010 × 85/2 و 1010× 09/3 کنیدی بود. نتایج نشان‌داد که روش دو مرحله‌ای با استفاده از آب پنیر با غلظت استفاده‌شده، در مورد هر دو جدایه موفقیت‌آمیز بود و میزان مناسبی از کنیدی هر دو جدایه را در مرحلة تخمیر جامد تولید­ کرد.

کلیدواژه‌ها

موضوعات


Extended Abstract

Entomopathogenic fungi often cause high levels of epizootic disease in nature, and biological control agents are broad-spectrum and environmentally safe. Global cheese production generates more than 100 million tonnes of liquid whey per year, which, if discarded, is considered an environmental pollutant. Cereals and agricultural wastes are used as the main substrates for the mass production of entomopathogenic fungi in different regions of the world, depending on their suitable transport characteristics and cost. In the current research, a diphasic fermentation method involving the production of spores in whey and then injection into solid substrates including rice, wheat, sorghum, barley and wheat bran was used to produce aerial conidia and various parameters such as the number of spores produced, the percentage of viability and the amount of resistance to different temperatures were investigated. Two isolates of pathogenic fungi, including Metarhizium anisopliae var acridum and Beauveria bassiana Z1, whose pathogenicity on various pests had been previously studied, were used to carry out the experiments and investigate the mass production process of conidia. For the first stage, cultivation and multiplication of spores in the whey, the liquid culture medium containing 87.5 g of whey powder in one litre of distilled water was prepared and autoclaved. In contrast, another culture medium containing 20 g of dextrose plus 20 g of yeast in one litre of distilled water was prepared and autoclaved. In the case of solid substrate fermentation, five substrates were prepared, including wheat, barley, rice, sorghum, and wheat bran. Two hundred grams of each substrate except bran were washed with tap water and then dried and poured into five-litre plastic bags with 100 ml of water. All substrates were autoclaved. To aerate the substrates, the open part of the bag was passed through a plastic cylinder and then covered with a layer of cloth, paper towels, and aluminium foil, respectively. After 72 hours, the amount of spores obtained in liquid culture media was checked. Whey was a more suitable culture medium for the cultivation and production of submerged spores. The results showed that the highest amount of conidia of M. anisopliae per ml was significantly obtained from rice and wheat bran. The lowest amount of conidia production also belonged significantly to sorghum. The highest number of B. bassiana conidia per ml was obtained from wheat bran. Then, the wheat substrate produced the highest amount of conidia. The lowest amount of conidia also belonged significantly to barley. For M. anisopliae, the viability of conidia obtained from all substrates except sorghum was 100% and there was a significant difference between these two groups. The results showed that for B. bassiana, the viability of conidia obtained from all substrates except barley was 100% and there was a significant difference between these two groups. The viability percentages of both isolates were determined at ambient temperature on rice and wheat, respectively, after 11 days.The mean viability percentage of M. anisopliae was 97.2%. This value was 100% for B. bassiana. The moisture content of cooked rice and wheat was 60.96% and 40.96%, respectively. One gram of conidial powder of M. anisopliae obtained from sieving rice and B. bassiana obtained from wheat sieving contained about 2.85×1010 and 3.09×1010 conidia, respectively. The results for B. bassiana Z1 showed that the viability percentage of conidia after eight weeks of storage was maintained at the same level of 100% in all ratios of talc powder and without talc powder. However, for M. anisopliae, the viability percentage of conidia increased significantly with the increase in talc powder. In addition, without the presence of talc powder, the viability rate of M. anisopliae var acridum decreased from 97.2 to 72.40%. The results of the present research showed that the two-phase method using whey was successful for both isolates and led to proper conidia production in the solid fermentation phase. This diphasic method with the described combination was carried out for the first time for insect pathogenic fungi mass production. Future studies should aim to optimise the mass production process based on whey, cereal grains and agricultural waste. An important issue in the mass production of entomopathogenic fungi is screening the substrates to harvest conidia, especially wheat bran. Using advanced technologies, equipped digital sieves and shakers with specific settings for each substrate should be designed and built to obtain the maximum yield by avoiding conidial waste.

بنا مولایی، پریسا؛ طلایی حسنلویی، رضا؛ عسکری، حسن و خرازی پاکدل، عزیز (1389). بررسی پتانسیل چند ماده­ی طبیعی جامد در تولید کنیدی قارچ بیمارگر حشرات، Beauveria bassiana (Ascomycota, Cordycipitaceae). نامه انجمن حشره­شناسی ایران، 30(2): 1-15.
بی­غم، ضرغام و طلایی حسنلویی، رضا (1396). تولید دو قارچ بیمارگر حشرات Beauveria bassiana و Metarhizium anisopliae با کشت دو مرحله­ای بر روی مواد طبیعی. کنترل بیولوژیک آفات و بیماری های گیاهی، 6(1): 103-109.
رحمانی، آ.، شیروانی، ا. و م. راشکی. (1400). بررسی اثر کشندگی قارچ Metarhizium anisopliae (Metchnikoff) روی شپشه آرد Tribolium castaneum (Herbst). پایان‌نامه کارشناسی ارشد، بخش گیاه­پزشکی، دانشگاه شهید ‌باهنر‌کرمان، 60 صفحه.
رشید، مرضیه؛ طلایی حسنلویی، رضا؛ خدائیان چگنی، فرامرز  و گوتل، مارک (1398). بررسی پتانسیل استفاده از چند محیط کشت طبیعی مایع برای تولید بلاستوسپورهای دو قارچ بیمارگر­حشرات Metarhizium anisopliae و  Beauveria bassiana. مهندسی بیوسیستم ایران، 50(2): 490-497.
 کاظمی، س.، شیروانی، ا. و م. راشکی. (1399). بررسی اثر کشندگی قارچ Metarhizium anisopliae (Metschinkoff) روی سوسک چهار نقطه‌ای حبوبات  Callosobruchus maculatus (Fabricius). پایان­نامه کارشناسی ارشد، بخش گیاه­پزشکی، دانشگاه شهید ‌باهنر‌کرمان، 58 صفحه.
REFERENCES
Agale, S. V., Gopalakrishnan, S., Ambhure, K. G., Chandravanshi, H., Gupta, R. & Wani, S. P., (2018). Mass production of entomopathogenic fungi (Metarhizium anisopliae) using different grains as a substrate. International Journal of Current Microbiology and Applied Science, 7(1), 2227-2232.
Bagheri, A., Askari Seyahooei, M. & Fathipour, Y., (2021). The Endophytes. In: Omkar (Ed.) Microbial approaches for insect pest management. Singapore. https://doi.org/10.1007/978-981-16-3595-3_4.
Barrancoflorido, J. E., Alatorrerosas, R, Gutierrezrojas, M., Viniegragonzalez, G. & Saucedocastaneda, G., (2002). Criteria for the selection of strains of entomopathogenic fungi Verticillium lecanii for solid-state cultivation. Enzyme and microbial technology, 30, 910-915.
Belay, Y. C. & Tenkegna, T. A., (2017). Bioassay and pilot mass production of entomopathogenic fungus, Beauveria bassiana for the control of coffee berry borer (Hypothenemus hampei: Scolytidae), Ferrari. Journal of Applied Bioscience, 117, 11669-11683.
Bena-Molaei, P., Talaei-Hassanloui, R., Askary, H. & Kharazi-Pakdel, A., (2010). Study on potential of some solid natural substances in production of Beauveria bassiana (Ascomycota, Cordycipitaceae) conidia. Journal of Entomological Society of Iran, 30(2), 1-15. (In Persia).
Bena-Molaei, P., Talaei-Hassanloui, R. & Askary, H., (2015). Comparison of some natural broth media for production and virulence of Beauveria bassiana blastospores against the browntail moth, Euproctis chrysorrhoea (Lep.: Lymantriidae). Journal of Crop Protection, 4 (3), 313-320.
Bigham, Z. & Talaei-Hassanloui, R., (2017). Production of two entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on natural substrates using diphasic production method. Biological Control of Pests and Plant Diseases, 6(1), 103-109. (In Persia)
Curti, E., Carini, E., Bonacini, G., Tribuzio, G. & Vittadini, E. (2013). Effect of the addition of bran fractions on bread properties. Journal of Cereal Science, 57, 325-332.
Dangar, T. K., Geetha, L., Jayapal, S. D. & Pillai, G. B., (1999). Mass production of the entomopathogens Metarhizium anisopliae in coconut water. Journal of Plant Crop, 19, 54-59.
De Faria, M. & Wraight, S., (2007). Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237-256.
Grace, J. & Jaronski, S., (2005). The joy of Zen and the art of fermentation or the tao fungi. Solid substrate fermentation workshop manual. February 16-18, 2005. USDA/ARS/NPARL, Sidney.
Hansen, L. S. & Steenberg, T., (2007). Combining larval parasitoids and an entomopathogenic fungus for biological control of Sitophilus granaries (Coleoptera: Curculionidae) in stored grain. Biological Control, 40, 237-242.
Hong, T. D., Jenkins, N. E. & Ellis, R. H., (2000). The effects of duration of development and drying regime on the longevity of conidia of Metarhizium flavoviride. Mycological Research, 104 (6), 662-665.
Ibrahim, Y. B. & Low, W., (1993). Potential of mass production and field efficacy of isolates of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus against Plutella xylostella. International Journal of Pest Management, 39, (3), 288-292.
Inglis, G. D., Goettel, T. M. & Strasser, B., (2001). Use of hyphomycetous fungi for managing insect pest. In: T. M., Butt, Jackson, C. & Magan, N. (Eds.), Fungi as biocontrol agents (pp. 23-69). Wallingford, CAB International.
Jaronski, S. T., Jackson, M. A., (2012). Mass production of entomopathogenic Hypocreales. In: L.A., Lacey (Ed.), Manual of techniques in invertebrate pathology, (pp. 255-284). Academic Press, New York.
Jaronski, S. T. (2023). Mass production of entomopathogenic fungi-state of the art. In: J. A., Morales-Ramos, M. G., Rojas & D. I., Shapiro-Ilan (Eds.), Mass production of beneficial organisms: Invertebrates and entomopathogens, 2nd edition (pp. 317-358). Academic Press, Elsevier Inc, New York.
Javed, M. M., Zahoor, S., Shafaat, S., Mehmooda, I., Gul, A., Rasheed, H., Bukhari, S. A. I., Aftab, M. N.  & Haq, I.-U., (2012). Wheat bran as a brown gold: nutritious value and its biotechnological applications. African Journal of Microbiology Research, 6, 724-733.
Kassa, A., Brownbridge, M., Parker, B. L., Skinner, M., Gouli, V., Gouli, S., Guo, M. O., Lee, F. & Hata, T., (2008). Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycological Research, 112, 583-591.
Kazemi, S., Shirvani, A. & Rashki, M., (2020). Lethal effect survey of Metarhizium anisopliae (Metschinkoff) on Four-spotted been weevil (Callosobruchus maculatus) (Coleoptera: Bruchidae) (M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman, Iran) (In Persia).
Khashaveh, A., Safaralizade, M. H and Ghosta, Y., (2008). Pathogenicity of three Iranian isolates of the fungus, Metarhizium anisopliae (Metsch.) Sorokin (Deuteromycotina: Hyphomycetes) against granary weevil, Sitophilus granarius (Coleoptera: Curculionidae). Journal of Biological Science, 8(4), 804-808.
Kirchmair, M., Hoffmann, M., Neuhauser, S., Strasser, H. & Huber, L., (2007). Persistence of GRANMETs, a Metarhizium anisopliae based product, in grape phylloxera-infested vineyards. IOBC wprs Bulletin, 30 (7), 137-142.
Lakshmi, S. M., Alagammai, P. L. & Jayaraj, K., (2001). Studies on mass culturing of the entomopathogen whitehalo fungus Verticillium lecanii on three grain media and its inefficacy on Helicoverpa armigera, In: S., Igbachimuthu & S., Sen (Eds.), Microbials in insect pest management, (pp. 23- 27). Oxford and IBH publishing Pvt Ltd, New Delhi.
Latifian, M., Rad, B., Amani, M. & Rahkhodaei, E., (2013). Mass production of entomopathogenic fungi Beauveria bassiana (Balsamo) by using agricultural products based on liquid-solid diphasic method for date palm pest control. International Journal of Agricultural and Crop Science, 5 (19), 2337-2341.
Mahdneshin, Z., Safaralizadae, M. H., Ghosta, Y., (2009). Study on the efficacy of Iranian isolates of Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metsch) Sorokin against Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Biological Science, 9(2), 170-174.
Mascarin, G. M. & Jaronski, S. T., (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32, 177.
Morales, J., Joong-So, C. & Dong-Shik, K., (2006). Production rate of propionic acid in fermentation of cheese whey with enzyme inhibitors. Environmental Progress, 25, 228–234.
Noris, R. F., Chen, E. P., & Kogn, M., 2002. Concepts integrated Pest Management, Premise Hall of India Private Limited, New Delhi.
Pintado, M. E., Pintado, A. I. E., Malcata, F. X., (1999a). Fate of nitrogen during metabolism of whey lactose by Rahnella aquatilis. Journal of Dairy Science, 82, 2315–2326.
Pintado, M. E., Pintado, A. I. E. & Malcata, F. X., (1999b). Production of polysaccharide by Rahnella aquatilis with whey feedstock. Journal of Food Science, 64, 348–352.
Prakash, G. V. S. B., Padmaja, V. & Kiran, R. R. S., (2008). Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresource Technology, 99 (6), 1530-1537.
Rahmani, A., Shirvani, A. & Rashki, M., (2021). Survey of the lethal effect of Metarhizium anisopliae (Metchinkoff) on Tribolium castaneum (Coleoptera: Tenebrionidae) (M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman, Iran) (In Persia).
Rashid, M., Talaei-Hassanloui, R., Khodayian, F. & Goettel, M., (2019). Potential use of some liquid natural media for the production of blastospores of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Iranian Journal of Biosystem Engineering, 50(2), 490-497. (In Persia).
Rees, D., (2004). Insects of Stored Products, CSIRO publishing.
Rodrigues, C. & Pratissoli, D., (1990). Pathogenicity of Beauveria brongniartii (Sacc). Petch and Metharhizium anisopliae (Mots) Sorok. and its effect on the corn weevil and the bean beetle. Anais da Sociedade Entomologica do Brasil, 19, 302-306.
Roshandel, S., Askary, H., Talaei Hassanlouei, R. & Allahyari, H., (2016). The effects of natural substrates on the sporulation and viability of conidia and blastospores of Metarhizium anisopliae. Biocontrol in Plant Protection, 4 (1), 94-1104.
Shams, G., Safaralizadeh, M. H., Imani, S., Shojai, M. & Aramideh, Sh., (2011). A laboratory assessment of the potential of the entomopathogenic fungi Beauveria bassiana (Beauvarin®) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) and Sitophilus granarius (L.) (Coleoptera: Curculionidae). African Journal of Microbiological Research, 5(10), 1192-1196.
Sharma, S. P., Gupta, R. B. L. & Yadava, C. P. S., (2002). Selection of a suitable medium for mass multiplication of entomofungal pathogens. Indian Journal of Entomology, 14, 255-261.
Skinner, M., Gouli, S., Frank, C. E., Parker, B. L. & Kim, J. S., (2012). Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fungi. Biological Control, 63 (3), 246-252.
Sohrabi, F., Jamali, F., Morammazi, S., Saber, M. & Kamita, S. G., (2019). Evaluation of the compatibility of entomopathogenic fungi and two botanical insecticides tondexir and palizin for controlling Galleria mellonella L. (Lepidoptera: Pyralidae). Crop Protection, 117, 20-25.
Soundarapandian, P. & Chandra, R., (2007). Mass production of entomopathogenic fungus Metarhizium anisopliae (Deuteromycota; Hyphomycetes) in the laboratory. Research Journal of Microbiology, 9, 690-695.
St. Leger, R. J., & Wang, C., (2010). Genetic engineering of fungal biocontrol agents to achieve efficacy against insect pests. Applied Microbiology and Biotechnology, 85, 901-907.
Vega, F. E., Meyling, N. V., Luangsa-ard, J. J.  & Blackwell, M., (2012). Fungal Entomopathogens. In: F. E. Vega & H. K. Kaya (Eds.), Insect pathology (pp. 171-220). Elsevier Inc., USA.
Wyss, G. S., Charudattan, R., De Valerio, J. T., (2001). Evaluation of agar and grain media for mass production of conidia of Dactylaria higginsii. Plant Disease, 85, 1165-1170.
Yang, S. T. & Silva, E. M., (1995). Novel products and new technologies for use of a familiar carbohydrate, milk lactose. Journal of Dairy Science, 78, 2541–2562.
Zall, R. R., (1992). Sources and composition of whey and permeate. In: J. G. Zadow (Ed.), Whey and lactose processing. Springer, Dordrecht.