تاثیر حشره‌کش بینو 2 و عوامل بیماریزای قارچی بر فعالیت آنزیم‌های گوارشی، سم زدا و کیتینازی شته مومی کلم ، Brevicoryne brassicae (Hemiptera: Aphididae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه ارومیه، ایران

3 پژوهشکده زیست فناوری، دانشگاه آنکارا، آنکارا، ترکیه

4 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه یوزینجی یل، وان، ترکیه.

چکیده

شته مومی کلم Brevicoryne brassicae (L.)، یکی از مهمترین آفات محصولات کلم می‌باشد. استفاده از حشره‌کش‌هایی با منشا گیاهی و عوامل کنترل بیولوژیک نظیر قارچ‌های بیماری‌زای حشرات  به عنوان روش­های تکمیلی در مدیریت تلفیقی آفت مورد توجه قرار گرفته است. در این پژوهش، تاثیر حشره­کش بینو 2 و دو گونه قارچ بیماری‌زای حشرات، Metarhizium anisopliae AB و Lecanicillium lecanii 229، به‌عنوان حشره‌کش‌های بیولوژیک، روی محتوای پروتئینی، فعالیت پروتئازهای گوارشی، آنزیم کیتیناز، آنزیم های استیل‌کولین استراز و گلوتاتیون-اس-ترانسفراز حشره کامل شته مومی کلم در دمای 2±25 درجه سلسیوس، رطوبت نسبی 5±60 درصد و دوره نوری 16 ساعت روشنایی و 8 ساعت تاریکی بررسی شد. نتایج نشان داد که استفاده از غلظت کشنده (LC50) ایزوله‌های قارچی با افزایش ترشح آنزیم‌های پروتئازی و کیتینازی باعث هضم پروتئین و کیتین موجود در کوتیکول شته شده و حساسیت شته‌ها را نسبت به این عوامل افزایش دادند. همچنین حشره­کش بینو2 با کاهش میزان پروتئین و مهار فعالیت آنزیم‌های گوارشی، اثر ضدتغذیه‌ای داشته است. به موازات کاهش فعالیت آنزیم های گوارشی، فعالیت آنزیم­های سم­زدا هم تحت تاثیر حشره­کش بینو2 کاهش یافت. نتایج این تحقیق نشان داد که قارچ‌های مورد مطالعه و حشره­کش بینو2 منجر به افزایش مرگ و میر حشرات کامل شته مومی کلم شدند و از اطلاعات حاصله می‌توان در مدیریت این آفت استفاده کرد.

کلیدواژه‌ها

موضوعات


Extended Abstract

Introduction

The cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), is known one of the most destructive pests, causing damage either directly by sucking or indirectly by secreting honeydew. It is also known as a vectors of various plant viruses. Chemical insecticides are the primary strategy used to control aphids. However, extensive usage of insecticides results in resistance and other toxicity problems for humans, natural enemies and environment. Consequently, the aforementioned side effects of insecticides have stimulated studies exploring the complementary methods to control of aphids. Entomopathogenic fungi (EPFs) which are effective a wide range of insect pests are known as a valuable biological control agents against insect pests. Some EPFs, including Metarhizium anisopliae (Metschn.) Sorok. and Lecanicillium lecanii Zimm known as fungal endophytes, have negative effects on insects. Because of some exclusive characteristics of EPFs including specificity against target pests, environmentally friendly formulations, and compatibility with insecticides, they are considered as biological agents in integrated pest management programs. The commercial products of the most important EPFs such M. anisopliae and L. lecanii have received increasing intrest in pest control. In the present research, we used two native isolates, M. anisopliae and L. lecanii. The usage of native isolates has advantages including compatibility with the environment, insecticides, and native pests and not causing adverse effects on indigenous species. Sophora flavescens Ait. (Fabaceae), Bino2®, is a plant- derived insecticide which has different insecticidal, and antifeedant activity against plant- sucking pests such as aphids, grasshoppers, mites, etc. The insecticidal activity of herbal and biorational insecticide, refers to the existence of alkaloids, i. e. Sophocarpine, oxymatrine, matrine, isomatrine.

 

Materials and Methods

In the present study, the effect of two aforementioned EPFs and Bino2 were examined  on the digestion, detoxification enzymes, and chitinase activity of cabbage aphid adults at a temperature of 25±2 °C, relative humidity of 60±5% and a photoperiod of 16:8 h (L: D). The dipping method was used in bioassay tests. Briefly, the cabbage leaf discs were dipped in five different concentrations of Bino2 (150, 185.39, 229.13, 283.90, and 350 µl/L) for 10 s. In terms of EPFs, the used concentrations were in the ranges of 101-105 (conidia/mL) containing 0.05% Tween 80. The treated leaves were air-dried for 30 min at room temperature, and then 15 adults of cabbage aphid were released into the ventilated Petri dishes containing the treated leaflet.  Distilled water and the distilled water containing 0.05% Tween 80 were used as controls for Bino2 and EPFs, respectively. The bioassay tests were replicated four times for each concentration of Bino2, EPFs, and controls. The percentage of adult mortality was counted 48 h and 6 days after treatment for Bino2 and EPFs, respectively. The lethal concentrations (LC50, LC90), and 95% confidence limits in each treatment were obtained using the Probit analysis, which was conducted by SPSS software (Ver. 20, 2011). Analysis of variance between treatments was done and the means were evaluated by Tukey’s multiple-range test and T-test for EPFs and Bino2, respectively using SPSS software Ver. 20, 2011).

 

Results and Discussion

The results indicated that lethal concentration (LC50) of the fungal isolates increased the protease and chitinase enzyme activity in the aphid cuticle, which in turn increased the sensitivity of aphids to the aforementioned agents. There were significant differences between EPFs isolates regarding trypsin (F=4.58; df= 2, 6; P꞊0.038) and chitinase (F=3.21; df=2, 6; P꞊0.021) activity. The highest and lowest trypsin activity was obtained on M. anisoplia (0.1595±0.0236 µmol/min/mg protein) and L. lecanii isolates (0.066±0.0027 µmol/min/mg protein), respectively. Also, the highest and lowest chitinase activity was obtained M. anisoplia (0.1722±0.0025) and control treatments (0.0080±0.0021) µmol/min/mg protein, respectively. However, there was no significant difference (F=0.48; df = 2, 6; P꞊0.704) between EPFs isolates regarding chymotrypsin activity. Bino2 insecticide had an anti-nutritional effect by reducing the amount of protein and inhibiting the digestive enzymes activity. The results indicated that the adults of aphids which exposed to the LC50 concentration of Bino2 (247.60 µl/L) had the lowest protein content (0.08±0.027 mg protein/ mg adult weights), and protease (0.0076±0.0002 µmol/min) activity. Along with digestive enzyme activity, the of detoxification enzymes of the cabbage aphid adults were affected by LC50 concentration of Bino2. The lowest and highest acetylcholinesterase (0.0011±0.0003 µmol/min/mg protein) and glutathion-s transferase (0.0014±0.0006 µmol/min/mg protein) activity were found on Bino2 adults compared to control group.

 

Conclusion

The overall results of this research showed that either the tested entomopathogenic fungi or Bino2 insecticide, led to an increase in the mortality of cabbage aphids and the obtained information can be used in the management of this pest.

اصغرنژاد، شیوا (1399). مقایسه­ی اثر زیر کشندگی دو سم بینو­2 و فلونیکامید بر فراسنجه­های دموگرافی شته مومی کلم Brevicoryne brassicae (Hem.:Aphididae) در شرایط آزمایشگاهی. پایان‌نامه کارشناسی ارشد. به‌راهنمایی فریبا مهرخو. ارومیه: دانشگاه ارومیه، دانشکدة کشاورزی.
حسینی نوه، وحید و قدمیاری، محمد (1392). مبانی و مفاهیم روش‌های آزمایشگاهی در بیوشیمی، فیزیولوژی و سم‌شناسی حشرات. چاپ اول. تهران: موسسه انتشارات دانشگاه تهران.
خانجانی، محمد ( 1384). آفات گیاهان زراعی ایران. انتشارات دانشگاه بوعلی سینا. همدان. چاپ اول. 467 صفحه.
خرمی، فرشته (1397). ارزیابی کارایی عصاره‏های متانولی گیاهان زنیان و رازیانه با سه گونه متفاوت از قارچ‏های بیماریزای حشرات با راهکارهای نانوفرمولاسیون جهت کنترل بید سیب‏زمینی‏. رساله دکتری. به راهنمایی فریبا مهرخو. ارومیه: دانشگاه ارومیه، دانشکدة کشاورزی.
رشادت سلوانق، نازی (1400). بررسی اثرات زیر‌کشندگی فلونیکامید و بینو‌2 روی فراسنجه‌های رشد جمعیت Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).. پایان‌نامه کارشناسی ارشد. به‌راهنمایی فریبا مهرخو. ارومیه: دانشگاه ارومیه، دانشکدة کشاورزی.
موسوی، مهدیه. (1401). تاثیر سه گونه قارچ بیمارگر حشرات و سم بینو­2 بر برخی ویژگی­های اکوفیزیولوژیکی شته مومی کلم،  (Hemiptera: Aphididae) Brevicoryne brassicae. رساله دکتری. به راهنمایی فریبا مهرخو. ارومیه: دانشگاه ارومیه، دانشکدة کشاورزی.
REFERENCES
Abdelaal, K., Essawy, M., Quraytam, A., Abdallah, F., Mostafa, H., Shoueir, K., ... & Hafez, Y. (2021). Toxicity of essential oils nanoemulsion against Aphis craccivora and their inhibitory activity on insect enzymes. Processes, 9(4), 624. https://doi.org/10.3390/pr9040624.
Abdelaziz, O., Senoussi, M. M., Oufroukh, A., Birgücü, A. K., Karaca, I., Kouadri, F., Naima, B., & Bensegueni, A. (2018). Pathogenicity of three entomopathogenic fungi, to the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), and their Alkaline protease activities. Egyptian Journal of Biological Pest Control, 28, 24. https://doi.org/10.1186/s41938-018-0030-7.
Akbari, S., Ali Safavi, S., & Ghosta, Y. (2014). Efficacy of Beauveria bassiana (Blas.) Vuill. against cabbage aphid Brevicoryne brassicae L.(Hem.: Aphididae) in laboratory condition. Archives of Phytopathology and Plant Protection, 47(12), 1454-1458. https://doi.org/10.1080/03235408.2013.845972.
Akbari, S., Mirfakhraie, S., Aramideh, S., & Safaralizadeh, M. H. (2020). Effect of fungal isolates and imidacloprid on cabbage aphid Brevicoryne brassicae and its parasitoid Diaeretiella rapae. Zemdirbyste-Agriculture, 107(3), 255-262. https://doi.org/10.13080/z-a.2020.107.033.
Alves, E. A., Schmaltz, S., Tres, M. V., Zabot, G. L., Khun, R. C., & Mazutti, M. A. (2020). Process development to obtain a cocktail containing cell-wall degrading enzymes with insecticidal activity from Beauveria bassiana. Biochemical Engineering Journal, 156, 107484. https://doi.org/10.1016/j.bej.2019.107484.
Asgharnezhad, S. (2021). Comparison the sublethal effect of Bino2 and Flonicamid on demographic parameters of cabbage aphid, Brevicoryne brassicae (Hem.: Aphididae) in laboratory conditions. MSc. Thesis. Urmia University. pp: 57. (In Persian).
Bandani, A. R. (2013). Insect physiology, Tehran: Tehran University Press. (In Persian).
Bidochka, M. J., & Meltzer, M. J. (2000). Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains. Canadian Journal of Microbiology, 46(12), 1138–1144. https://doi.org/10.1139/w00-112.
Bogorni, P. C., & Vendramim, J. D. (2005). Sublethal effect of aqueous extracts of Trichilia spp. on Spodoptera frugiperda (JESmith) (Lepidoptera:Noctuidae) development on maize. Neotropical Entomology, 34, 311–317. https://doi.org/10.1590/S1519-566X2005000200020.
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.
Briggs, L. L., Colwell, D. D., & Wall, R. (2006). Control of the cattle louse Bovicola bovis with the fungal pathogen Metarhizium anisopliae. Veterinary Parasitology, 142(3-4), 344-349. https://doi.org/10.1016/j.vetpar.2006.07.018.
Bullangpoti, V., Visetson, S., Milne, J., Milne, M., Sudthongkong, C., & Pronbanlualap, S. (2007). Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanism. Journal of Applied Sciences, 72(3), 431-441.
Caballero, C., López-Olguín, J., Ruiz, M., Ortego, F., & Castañera, P. (2008). Antifeedant activity and effect of terpenoids on detoxication enzymes of the beet armyworm, Spodoptera exigua (Hübner). Spanish Journal of Agricultural Research, 6, 177–184. http://dx.doi.org/10.5424/sjar/200806S1-386.
Castellanos-Moguel, J., González-Barajas, M., Mier, T., Reyes-Montes, M. R., Aranda, E., & Toriello, C. (2007). Virulence testing and extracellular subtilisin-like (Pr1) and trypsin-like (Pr2) activity during propagule production of Paecilomyces fumosoroseus isolates from whiteflies (Homoptera: Aleyrodidae). Revista Iberoamericana de Micología, 24(1), 62-68.
Charnley, A. K. (2003). Fungal Pathogens of Insects: Cuticle Degrading Enzymes and Toxins. Advances in Botanical Research, 40, 241- 321. https://doi.org/10.1016/S0065-2296(05)40006-3.
Chitgar, M. G., Hajizadeh, J., Ghadamyari, M., Karimi-Malati, A., Sharifi, M., & Hoda, H. (2014). Cellular energy allocation in the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae), following sublethal exposure to diazinon, fenitrothion, and chlorpyrifos. Journal of Plant Protection Research, 54(1), 78-84. https://doi.org/10.2478/jppr-2014-0012.
Chui-Chai, N., Krutmuang, P., Nalumpang, S., Mekchay, S., Khanongnuch, C., & Chanbang, Y. (2012). Insecticidal activity and cuticle degrading enzymes of entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). CMU Journal of Natural Sciences, 11(1), 147-155.
Dáder, B., Then, C., Berthelot, E., Ducousso, M., Ng, J. C. K., & Drucke, M. (2017). Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Science, 24(6), 929-946. https://doi.org/10.1111/1744-7917.12470.
Derakhshan, A., Rabindra, R. J., & Ramanujam, B. (2007). Efficacy of different isolates of entomopathogenic fungi against Brevicoryne brassicae (linnaeus) at different temperatures and humidities. Journal of Biological Control, 21(1), 65-72.
Dias, B. A., Neves, P. M. O. J., Furlaneto-Maia, L., & Furlaneto, M. C. (2008). Cuticle-degrading proteases produced by the entomopathogenic fungus Beauveria bassiana in the presence of coffee berry borer cuticle. Brazilian Journal of Microbiology, 39, 301-306. https://doi.org/10.1590/S1517-83822008000200019.
Elhakim, E., Mohamed, O., & Elazouni, I. (2020). Virulence and proteolytic activity of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egyptian Journal of Biological Pest Control, 30(1), 1-8. https://doi.org/10.1186/s41938-020-00227-y.
Ellis, P. R., Kift, N. B., Pink, D. A. C., Jukes, P. L., Lynn, J., & Tatchell, G. M. (2000). Variation in resistance to the cabbage aphid (Brevicoryne brassica) between and within wild and cultivated brassica species. Genetic Resources and Crop Evaluation, 47, 395-401.
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
Elpidina, E. N., Vinokurov, K. S., Rudenskaya, Y. A., Dunaevsky, Y. E., & Zhuzhikov, D. P. (2001). Proteinase inhibitors in Nauphoeta cinerea midgut. Archives of Insect Biochemistry and Physiology, Published in Collaboration with the Entomological Society of America, 48(4), 217-222. https://doi.org/10.1002/arch.10001.
Farahani, S., Bandani, A. R., & Amiri, A. (2020). Toxicity and repellency effects of three essential oils on two populations of Tetranychus urticae (Acari: Tetranychidae). Persian journal of acarology, 9(1). https://doi.org/10.22073/pja.v9i1.55853.
Ferreira, J. M., Pinto, S. M. N., & Soares, F. E. F. (2021). Metarhizium robertsii protease and conidia production, response to heat stress and virulence against Aedes aegypti larvae. AMB Express, 11, 166. https://doi.org/10.1186/s13568-021-01326-1.
Gholamzadeh-Chitgar, M., Hajizadeh, J., Ghadamyari, M., Karimi-Malati, A., & Hoda, H. (2015). Effects of sublethal concentration of diazinon, fenitrothion and chlorpyrifos on demographic and some biochemical parameters of predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) in laboratory conditions. International Journal of Pest Management, 61(3), 204-211. https://doi.org/10.1080/09670874.2015.1035772.
Gullan, P. J., & Cranston, P. S. (2005). The insects: An outline of entomology. 3rd ed. Blackwell.
Gunderson, M. P., Nguyen, B. T., Cervantes Reyes, J. C., Holden, L. L., French, J., Smith, B. D., & Lineberger, C. (2018). Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere, 208, 749–756. https://doi.org/10.1016/j.chemosphere.2018.05.183.
Gupta, S. C., Leaters, T. D., El-Sayed, G. N., & Ignoffo, C. M. (1992). Insect cuticle degrading enzyes from the entomogenous fungus Baeuveria bassiana. Experimental Mycology, 16, 132-137. https://doi.org/10.1016/0147-5975(92)90019-N.
Habig, W. H., Pabst, M. J., & Jacoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8.
Hall, R. A. (1981). The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. Microbial Control of Pests and Plant Disease, Academic press, London.
Haouas, D., Cioni, P. L., Halima-Kamel, M. B., Flamini, G., & Hamouda, M. H. B. (2012). Chemical composition and bioactivities of three Chrysanthemum essential oils against Tribolium confusum (du Val) (Coleoptera: Tenebrionidae). Journal of Pest Science, 85, 367-379.
Hosseininaveh, V., & Ghadamyari, M. (2013). Principles and Concepts of Experimental Methods in Insect Biochemistry, Physiology and Toxicology, Tehran: Tehran University Press. (In Persian).
Hu, J., Wang, W., Dai, J., & Zhu, L. (2019). Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Industrial Crops & Products, 128, 29-37. https://doi.org/10.1016/j.indcrop.2018.10.076.
Hussain, A., Rizwan-ul-Haq, M., Al-Ayedh, H., & AlJabr, A. M. (2016). Susceptibility and immune defence mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against entomopathogenic fungal infections. International Journal of Molecular Sciences, 17(9), 1518. https://doi.org/10.3390/ijms17091518.
Hussain, A.; Tian, M. Y.; He, Y. R.; Bland, J. M., & Gu, W. X. (2010). Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55, 166–173. https://doi.org/10.1016/j.biocontrol.2010.08.009.
Hussain, S., Masud, T., & Ahad, K. (2002). Determination of pesticides residues in selected varieties of mango. Pakistan Journal of Nutrition, 1(1), 41-42.
Jarrahi, A., & Safavi, S. A. (2016). Sublethal effects of Metarhizium anisopliae on life table parameters of Habrobracon hebetor parasitizing Helicoverpa armigera larvae at different time intervals. BioControl, 61(2), 167–175. https://doi.org/10.3923/pjn.2002.41.42.
Jeong, G. J., Khan, F., Tabassum, N., & Kim, Y. M. (2023). Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. International Journal of Biological Macromolecules, 249, 126021. https://doi.org/10.1016/j.ijbiomac.2023.126021.
Kassa, A., Zimmermann, G., Stephan, D., & Vidal, S. (2002). Susceptibility of Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) and Prostephanus truncates (Horn) (Coleoptera: Bostrichidae) to entomopatogenic fungi from Ethiopia. Biocontrol Science and Technology, 12, 727- 736. https://doi.org/10.1080/0958315021000039905.
Keppanam, R., Sivaperumal, S., Kanta, D. C., Akutse, K. S., & Wang, L. (2017). Molecular docking of protease from Metarhizium anisopliae and their toxic effect against model insect Galleria mellonella. Pesticide Biochemistry and Physiology, 138, 8–14. https://doi.org/10.1016/j.pestbp.2017.01.013.
Khanjani, M. (2009). Field Crop Pests in Iran. Bu-Ali Sina University Press. Hamedan. First edition. p. 467. (In Persian).
Khorrami, F. (2018). Efficacy of Trachysperum ammi and Foeniculum vulgare methanolic extracts with three different entomopathogenic fungi by nanoformulation approaches against the potato tuber moth, Phthorimaea operculella Zeller. Phd. Thesis. Urmia University. pp: 111. (In Persian).
Kim, C. S., Lee, J. B., Kim, B. S., Nam, Y. H., Shin, K. S., Kim, J. W., ... & Kwon, G. S. (2014). A technique for the prevention of greenhouse whitefly (Trialeurodes vaporariorum) using the entomopathogenic fungus Beauveria bassiana M130. Journal of Microbiology and Biotechnology24(1), 1-7. https://doi.org/10.4014/jmb.1306.06033.
Klowden, M. J. (2002). Physiological systems in insects, San Diego, California: Academic Press.
Krishna-Kumari, G., Aravind, S., Balachandran, J., Ganesh, M., Soundarya Devi, S., & Rajan, S. (2003). Antifeedant neo- clerodanes from Teucrium tomentosum Heyne (Labiatae). Phytochemistry, 64, 1119–1123. https://doi.org/10.1016/S0031-9422(03)00510-7.
Kumral, N. A., Gencer, N. S., Susurluk, H., & Yalcin, C. (2011). A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology, 37(3), 255-268. https://doi.org/10.1080/01647954.2010.514289. Lashkari, M. R., Sahragard, A., & Ghadamyari, M. (2007). Sublethal Effects of Imidacloprid and Pymetrozine on Population Growth Parameters of Cabbage Aphid, Brevicoryne brassicae on Rapeseed, Brassica napus L. Journal of Insect Science, 14, 207-212. https://doi.org/10.1111/j.1744-7917.2007.00145.x.
Li, S. G., Li, M. Y., Huang, Y. Z., Hua, R. M., Lin, H. F., He, Y. J., Wei, L. L., & Liu, Z. Q. (2013). Fumigant activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferase activities in adult Sitophilus zeamais. Journal of Pest Science, 86, 677-683.
Liu, S. Q., Meng, Z. H., Yang, J. K., Fu, Y. K., & Zhang, K. Q. (2007). Characterizing structural features of cuticle-degrading proteases form fungi by molecular modeling. BMC Structural Biology, 7, 1-14. https://doi.org/10.1186/1472-6807-7-33. Liu, Z. L., Goh, S. H., & Ho, S. H. (2007). Screening of Chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Journal of Stored Products Research, 43(3), 290–296. https://doi.org/10.1016/j.jspr.2006.06.010
 Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M., & Atlihan, R. (2020). Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology, 113(6), 2713-2722. https://doi.org/10.1093/jee/toaa193.
Mao, L., & Henderson, G. (2007). Antifeedant activity and acute and residual toxicity of alkaloids fromSophora flavescens (Leguminosae) against Formosan Subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100(3), 866-870. http://dx.doi.org/10.1603/0022-0493.
 Marcic, D., Prijovic, M., Drobnjakovic, T., Medo, I., Peric, P., & Milenkovic, S. (2012) Greenhouse and field evaluation of two biopesticides against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pesticide Phytomed, 27(2), 313–320.Mehrabadi, M., Bandani, A. R., Mehrabadi, R., & Alizadeh, H. (2012). Inhibitory activity of proteinaceous α-amylase inhibitors from triticale seeds against Eurygaster integriceps salivary α-amylases: Interaction of the inhibitors and the insect digestive enzymes. Pesticide Biochemistry and Physiology, 102, 220-228. https://doi.org/10.1016/j.pestbp.2012.01.008.
Mousavi, M. (2022). Effect of three entomopathogenic fungi species and Bino2 on some ecophysiological characterices of cabbage aphid, Brevicoryne brassicae, (Hemiptera: Aphididae). PhD. Thesis. Urmia University. pp: 129. (In Persian).
Mousavi, M., Mehrkhou, F., GÜZ, N., Goosta, Y., & Atlihan, R. (2022). Sublethal effects of two entomopathogenic fungi species, Metarhizium anisopliae and Beauveria bassiana, on the cabbage aphid (Brevicoryne brassicae). Turkish Journal of Agriculture and Forestry, 46(4), 441-452. https://doi.org/10.55730/1300-011X.3016.
Murad, A. M., Laumann, R. A., Lima, T. D. A., Sarmento, R. B., Noronha, E. F., Rocha, T. L., Valadares-Inglis, M. C., & Franco, O. L. (2006). Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142(3-4), 365-370.‏ https://doi.org/10.1016/j.cbpc.2005.11.016.
Murad, A. M., Laumann, R. A., Mehta, A., Noronha, E. F., & Franco, O. L. (2007). Screening and secretomic analysis of enthomopatogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3), 333-338.‏ https://doi.org/10.1016/j.cbpc.2007.01.010.
Mustafa, U., & Kaur, G. (2009). Extracellular enzyme production in Metarhizium anisopliae isolates. Folia microbiologica54, 499-504.‏
Nation, J. L. (2008). Insect physiology and biochemistry. 2nd ed. CRC Press, Taylor and Francis.
Ogendo, J. O., Belmain, S. R., Deng, A. L., & Walker, D. J. (2003). Comparison of toxic and repellent effect of Lantana camara L. with Tephrosia vogelii Hook and a synthetic pesticide against Sitophilus zeamais in maize grain storage. Insect Science and Its Application, 23, 127-135.
Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D., & McGaughey, W. H. (1997). Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. Journal of Biological Chemistry, 272(38), 23473-23476. https://doi.org/10.1074/jbc.272.38.23473.
Pan, D., Long-jia, C., Zong-lei, Z., Ke-jian, L., & Wei-hua, M. (2013). Responses of detoxifying, antioxidant and digestive enzyme activities to host shift of Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Integrative Agriculture, 12(2), 296-304. https://doi.org/10.1016/S2095-3119(13)60228-2.
Pérez, L. de C. S., Florido, J. E. B., Navarro, S. R., Mayagoitia, J. F. C., & López, M. A. R. (2014). Enzymes of Entomopathogenic Fungi, Advances and Insights. Advances in Enzyme Research, 2, 65-76. https://doi.org/10.4236/aer.2014.22007.
Pinto, F. G. S., Fungaro, M. H. P., Ferreira, J. M., Valadares-Inglis, M. C., & Furlaneto, M. C. (2002). Genetic variation in the cuticle-degrading protease activity of the entomopathogen Metarhizium flavoviride. Genetics and Molecular Biology, 25(2), 231–234. https://doi.org/10.1590/S1415-47572002000200018.
Prates, H. T., Santos, J. P., Waquil, J. M., Fabris, J. D., Oliveira, A. B., & Foster, J. E. (1998). Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Journal of Stored Products Research, 34, 234-249. https://doi.org/10.1016/S0022-474X(98)00005-8.
Qi, S. H., Wu, D. G., Chen, L., Ma, Y. B., & Luo, X. D. (2003). Insect antifeedants from Munronia henryi: structure of munroniamide. Journal of Agriculture and Food Chemistry, 51(24), 6949–6952. https://doi.org/10.1021/jf030292y.
Quesada-Moraga, E., Maranhao, E. A. A., Valverde-Garcia, P., & Santiago-Alvarea, C. (2006). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirement, and toxicogenetic activity. Biological Control, 36, 274-287. https://doi.org/10.1016/j.biocontrol.2005.09.022.
Ramanujam B, Krishna J, Poornesha B (2017). Field evaluation of entomopathogenic fungi against cabbage aphid, Brevicoryne brassicae (L.) and their effect on coccinellid predator, Coccinella septempunctata (Linnaeus). Journal of Biological Control, 31 (3), 168-171. https://doi.org/10.18311/jbc/2017/16350
 Razmjou, J., Jafary, M., & Borzoui, E. (2019). Host plant preference and life table of Brevicoryne brassicae
(Hemiptera: Aphididae). Journal of Crop Protection, 8 (2), 201-214.__
Reshadat-Selvangh, N. (2021). Survey on the sublethal effects of Flonicamid and Bino2 on the population growth prameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). MSc. Thesis. Urmia University. pp: 64. (In Persian).
Revathi, N., Ravikumar, G., Kalaiselvi, M., Gomathi, D., & Uma, C. (2011). Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. Journal of Plant Pathology & Microbiology, 2(4), 114. http://dx.doi.org/10.4172/2157-7471.1000114.
Robertson, J. L., Savin, N. E., Preisler, H. K., & Russell, R. M. (2007). Bioassays with Arthropods, Second Edition, Florida: CRC Press.
Roy, H. E., Vega, F. E., Chandler, D., Goettel, M. S., Pell, J., & Wajnberg, E. (2010). The Ecology of Fungal Entomopathogens, Cham, Switzerland: Springer.
Sabeghi Khosroshahi, Z., Abbasipour, H., & Rezazadeh, A. (2021). Inhibitory effect of aqueous bean extract, Phaseolus vulgaris (fabaceae), on α-amylase of the cabbage aphid, Brevicoryne brassicae. Archives of Agronomy and Soil Science, 67(10), 1425-1433. https://doi.org/10.1080/03650340.2020.1796982
Saleem, M. S., Batool, T. S., Akbar, M. F., Raza, S., & Shahzad, S. (2019). Efficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions. Egyptian Journal of Biological Pest Control, 29:37. https://doi.org/10.1186/s41938-019-0138-4
Santi, L., da Silva, W. O. B., Berger, M., Guimarães, J. A., Schrank, A., & Vainstein, M. H. (2010). Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, 55, 874–880. https://doi.org/10.1016/j.toxicon.2009.12.012.
Schrank, A., & Vainstein, M. H. (2010). Metarhizium anisopliae enzymes and toxins. Toxicon, 56, 1267–1274. https://doi.org/10.1016/j.toxicon.2010.03.008.
Senthil-Nathan, S. (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Frontiers in Physiology, 4(359). https://doi.org/10.3389/fphys.2013.00359.
Shojaei, A., Talebi, K., Sharifian, I., & Ahsaei, S. M. (2017). Evaluation of detoxifying enzymes of Tribolium castaneum and Tribolium confusum (Col.: Tenebrionidae) exposed to essential oil of Artemisia dracunculus L. Biharean Biologist, 11(1), 5-9.
St. Leger, R. J. (1991). The physiology of insect epidermis, Canberra, Australia: CSIRO publishing, 286-308.
St. Leger, R. J., Charnley, A. K., & Cooper, R. M. (1987). Characterization of cuticle degrading proteases produced by the entomopathogen Metarhizium anisopliae. Archives of Biochemical and Biophysiology, 253, 221-232. https://doi.org/10.1016/0003-9861(87)90655-2.
Suwannakut, S., Boucias, D. G., & Wiwat, C. (2005). Genotypic analysis of Nomuraea rileyi collected from various noctuid hosts. Journal of invertebrate pathology, 90(3), 169-176. https://doi.org/10.1016/j.jip.2005.08.010.
Taheri- Sarhozaki, M., & Safavi, S. A. (2014). Sublethal effects of tiametoxam on life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) under laboratory conditions. Archives of Phytopathology and Plant Protection, 47, 508–515. https://doi.org/10.1080/03235408.2013.813145
Tapondjou, A. L., Adler, C., Fontem, D. A., Bouda, H., & Reichmuth, C. (2005). Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Product Research, 41, 91–102. https://doi.org/10.1016/j.jspr.2004.01.004.
Thirumurugan, D., Cholarajan, A., Raja, S. S. S., & Vijayakumar, R. (2018). An introductory chapter. In Secondary Metabolites - Sources and Applications edited by Vijayakumar, R., & Raja, S. S. S. 3-21.
Tong, F. (2010). Investigation of mechanisms of action of monoterpenoid insecticides on insect gamma-aminobutyric acid receptors and nicotinic acetylcholine receptors. State University, Ames, Iowa. https://doi.org/10.31274/ETD-180810-48.
Vu, V. H., Hong, S. I., & Kim, K. (2007). Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering, 104(6), 498-505. https://doi.org/10.1263/jbb.104.498.
Wu, J. H., Ali, S., & Ren, S. X. (2010). Evaluation of chitinase from Metarhizium anisopliae as biopesticide against Plutella xylostella. Pakistan Journal of Zoology, 42(5), 521-528.
Yeom, H. J., Kang, J. S., Kim, G. H. & Park, I. K. (2012). Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). Journal of agricultural and food chemistry, 60(29), 7194-7203. https://doi.org/10.1021/jf302009w.
Zare, M., Talaei-Hassanloui, R., & Fotouhifar, K. (2014). Relatedness of proteolytic potency and virulence in entomopathogenic fungus Beauveria bassiana isolates. Journal of Crop Protection, 3(4), 425–434.
Ziaee, M., Moharramipour, S., & Mohsenifar, A. (2014). Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. Journal of Applied Entomology, 138(10), 763–771. https://doi.org/10.1111/jen.12133.
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungus, Metarhizium anisopliae. Biocontrol Science and Technology, 17(9), 715-728. https://doi.org/10.1080/09583150701593963.