76043abf2ebed2c

تعامل باکتری های Bacillus subtilis، B. cereus و Pseudomonas fluorescens CHA0 با نماتد مدلCaenorhabditis elegans و استفاده از این باکتری ها در کنترل نماتد Meloidogyne javanica

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حشره شناسی و بیماریهای گیاهی، پردیس ابوریحان، دانشگاه تهران، ایران

2 گروه حشره شناسی و بیماریهای گیاهی، پردیس ابوریحان، دانشگاه تهران

3 گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران، ایران

چکیده

در این تحقیق تعامل باکتری‌های Bacillus subtilis، B. cereus وPseudomonas fluorescens CHA0 با نماتد باکتری‌خوار Caenorhabditis elegansدر شرایط آزمایشگاهی مورد بررسی قرار گرفت. امکان زنده‌مانی و تکثیر C. elegans روی پرگنه باکتری‌های مذکور، امکان جذب و تغذیه C. elegans از باکتری‌ها، و نیز اثر ترکیبات فرار و آنتی بیوتیک‌های تولیدی باکتری‌ها بر C. elegans بررسی شد. کارایی این باکتری‌ها در کنترل نماتد Meloidogyne javanica با ارزیابی شاخص‌های تعداد گال و توده تخم در هر گیاه، قطر گال در هر گیاه و تعداد تخم در هر توده تخم بررسی شد و موثرترین باکتری جهت القا سیستم دفاعی گیاه مورد استفاده قرار گرفت. نتایج نشان داد که نماتد C. elegans قادر به زنده‌مانی و تکثیر بر روی پرگنه باکتری‌های B. cereus و P. fluorescens CHA0 نمی‌باشد. اگرچه نماتد C. elegans در شرایط عادی از B. cereus تغذیه نمی‌کند ولی در شرایط گرسنگی از آن تغذیه کرده ولی در نهایت منجر به مرگ نماتد گردید. گازهای فرار و آنتی بیوتیک‌های B.cereus و P. fluorescens CHA0 پس از یک یا دو روز موجب مرگ و میر 100% لاروهای C. elegans شدند. تمامی باکتری‌های مذکور موجب کاهش معنی‌دار (0.05>p) شاخص‌های مربوط به بیماری‌زایی نماتد M. javanica شدند و بیشترین اثر کنترل کنندگی با استفاده از P. fluorescens CHA0 به دست آمد. بررسی‌های بیوشیمیایی نشان داد که استفاده از باکتری مذکور و نیز آلودگی گیاه به نماتد M. javanica موجب افزایش معنی‌دار (0.05>p) آنزیم کاتالاز در گیاه می‌گردد. بر این اساس، پیشنهاد می-شود که باکتری‌های مذکور پتانسیل بالایی در کنترل بیولوژیک نماتدهای مولد گره ریشه دارند.

کلیدواژه‌ها


Bavaresco LG, Guaberto LM, Araujo FF (2021) Interaction of Bacillus subtilis with resistant and susceptible tomato (Solanum lycopersicum L.) in the control of Meloidogyne incognita. Archives of Phytopathology and Plant Protection 54: 359-374.
Britton C, Murray L (2006) Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. International Journal for Parasitology 36: 651-659.
Chamberlin HM (2010) C. elegans select. Nature Methods 7:693-695.
Das S, Wadud MA, Khokon MAR (2021) Functional evaluation of culture filtrates of Bacillus subtilis and Pseudomonas fluorescens on the mortality and hatching of Meloidogyne javanica. Saudi Journal of Biological Sciences 28: 1318-1323.
Dashtipour S (2013) Use of salicylic acid and Bacillus subtilis for control of root knot nematode Meloidogyne javanica and wilt fungi Fusarium oxysporoum f.sp. lycopersici in tomato plant. M.Sc., University of Tehran, Tehran, Iran (In Persian)
Eisenback, JD (1985) Diagnostic characters useful in the identification of the four most common species of root-knot nematodes (Meloidogyne spp), In: Sasser JN and Carter CC (eds.) An advanced treaties on Meloidogyne. USA: North Carolina State University. pp. 95-112.
Hu HJ, Chen YL, Wang YF, Tang YY, Chen SL, Yan SZ (2017) Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant Disease 101: 448-455.
Hu H, Wang C, Li X, Tang Y, Wang Y, Chen S, Yan S (2018) RNA‐Seq identification of candidate defense genes targeted by endophytic Bacillus cereus mediated induced systemic resistance against Meloidogyne incognita in tomato. Pest Management Science 74: 2793-2805.
Huang Z, Lu J, Liu R, Wang P, Hu Y, Fang A, Yang Y, Qing L, Bi C, Yu Y (2021) SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genetics and Biology 149: 103530.
Hussey R, Barker K (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Report 57: 1025-1028.
Johnson TE (2003) Advantages and disadvantages of Caenorhabditis elegans for aging research. Experimental Gerontology 38: 1329-1332.
Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82: 264-271.
Laaberki MH, Dworkin J (2008) Death and survival of spore-forming bacteria in the Caenorhabditis elegans intestine. Symbiosis 46: 95-100
Lamberti F, Taylor CE (1979) Root-knot nematodes (Meloidogyne species), systematics, biology and control. Paper presented In: International conference on Meloidogyne spp., 17-28 Oct.; Bari, Italy.
Laws TR, Atkins HS, Atkins TP, Titball RW (2006) The pathogen Pseudomonas aeruginosa negatively affects the attraction response of the nematode Caenorhabditis elegans to bacteria. Microbial Pathogenesis 40: 293-297.
Lillbro, M (2005) Biocontrol of Penicillium roqueforti on grain-acomparison of mode of action of several yeast species. M.Sc., Swedish University of Agricultural Sciences, Sweden.
Liu G, Lin X, Xu S, Liu G, Liu F, Mu W (2020) Screening, identification and application of soil bacteria with nematicidal activity against root‐knot nematode (Meloidogyne incognita) on tomato. Pest Management Science 76: 2217-2224.
Marx J (2002) Tiny worm takes a star turn. Science 298: 526
Mokhtari S (2007) Biological control of root-knot nematode (Meloidogyne javanica) by Pseudomonas fluorescens and Trichoderma harzianum. M.Sc., University of Tehran, Tehran, Iran (In Persian)
Mosahaneh L, Charehgani H, Abdollahi M, Rezaei R (2021) Biological control agents in the management of different initial population densities of Meloidogyne javanica in tomato. Acta Phytopathologica et Entomologica Hungarica 55: 151-159.
Omranzadeh F (2008) Induction of resistance to the root knot nematode (Meloidogyne javanica) in cucumber (Cucumis sativus) by some chemical and microbial inducer. M.Sc., University of Tehran, Tehran, Iran (In Persian)
Pršić J, Ongena M (2020) Elicitors of plant immunity triggered by beneficial bacteria. Frontiers in Plant Science 11: 594530.
Romanowski A, Migliori ML, Valverde C, Golombek DA (2011) Circadian variation in Pseudomonas fluorescens (CHA0) mediated paralysis of Caenorhabditis elegans. Microbial pathogenesis 50: 23-30.
Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biology and Biochemistry 35: 1615-1623.
Singh HK (2020) Current research and innovations in plant pathology. AkiNik, India.
Sohlenius B (1980) Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186-194.
Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology 100: 64-119.
Topalović O, Santos SS, Heuer H, Nesme J, Kanfra X, Hallmann J, Sørensen SJ, Vestergård M (2022) Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Applied Soil Ecology. 172:104344.
Yin N, Liu R, Zhao JL, Khan RAA, Li Y, Ling J, Liu W, Yang YH, Xie BY, Mao ZC (2021) Volatile organic compounds of Bacillus cereus strain bc-cm103 exhibit fumigation activity against Meloidogyne incognita. Plant Disease 105: 904-911.
Yousefi H, Sahebani N, Faravardeh L and Mahdavi V (2011) Application of a combination of salicylic acid and Bacillus subtilis to control cucumber root and stem rot, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, and evaluation of phenylalanine ammonia lyase activity. Iranian Journal of Plant Protection Science 42: 339-351. (In Persian.