Nematicidal effect of cell-free culture filtrates of EPN- symbiotic bacteria on Meloidogyne javanica

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده علوم و مهندسی کشاورزی، دانشگاه تهران، کرج، ایران

2 گیاه پزشکی

3 گروه گیاهپزشکی - دانشگاه تهران

4 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

5 گروه بیوتکنولوژی مولکولی و علوم زیستی مرک و موسسه بوخمن (BMLS)، دانشگاه گوته فرانکفورت، فرانکفورت، آلمان

چکیده

Biocontrol of plant parasitic nematodes to decrease the chemical pesticides effects is one of the top priorities. Entomopathogenic bacteria, Xenorhabdus spp. and Photorhabdus spp., are important due to production of natural products with antibacterial and antifungal activity. The effect of the cell-free culture filtrates (CFF) of symbiotic bacteria species Xenorhabdus nematophila, X. bovienii and Photorhabdus luminescens isolated from entomopathogenic nematodes Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora on the egg hatching and mortality of the second stage juveniles of root-knot nematode Meloidogyne javanica was determined. Exposure of eggs of M. javanica to CF resulted in the reduced hatching of nematode eggs with higher recorded effect for X. nematophila CF. Analysis of mortality data for juveniles at 24, 48 and 72 h following exposure to CFFs indicated that X. nematophila and P. luminescens were more toxic than X. bovienii after 24 h. However, X. bovienii was more toxic in lower concentration after 48 and 72h post-exposure. Thus, these bacteria have a potential as biocontrol agents for the management of root-knot nematode.

کلیدواژه‌ها

موضوعات


Akhiani A, Mojtahedi H, Naderi A (1984) Species and physiological races of root-knot nematodes in Iran. Iranian Journal of Plant Pathology 20:1–4.
Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect parasitic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology 128: 3061-3065.
Akhurst R, Boemare NE (1990) Biology and taxonomy of Xenorhabdus, In: Gaugler R, Kaya HK (eds.), Entomopathogenic nematodes in biological control. Boca Raton, FL, CRC Press. pp. 75-87.
Andalo V, Maximiniano C, Campos VP, Moino Jr A (2007) Effect of entomobacterial filtrates on Meloidogyne spp. juveniles. Nematologia Brasileira 31(3): 186-194.
Andalo V, Rocha FS, Maximiniano C, Moino Jr A, Campos VP (2012) In vivo and in vitro study of the effects of entomopathogenic bacteria and their filtrates on Meloidogyne incognita. International Research Journal of Microbiology 3(1): 005-009.
Atif HM, Javed N, Khan SA, Ahmed S (2012) Virulence of Xenorhabdus and Photorhabdus bacteria and their toxins against juvenile’s immobilization of Meloidogyne incognita. Pakistan Journal of Phytopathology 24(2): 170-174.

Bode HB (2009) Entomopathogenic bacteria as source of new secondary metabolites. Current Opinion in Chemical Biology 13(2): 224–230.

Boemare NE, Akhurst RJ, Mourant RG (1993) Deoxyribonucleic acid relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, with a proposal to transfer Xenorhabdus luminescens to a new genus Photorhabdus gen. nov. International Journal of Systematic Bacteriology 43(2): 249-255.
Boszormenyi E, Ersek T, Fodor AM, Foldes LSz, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormany A, Pekar S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology 107: 746-759.

Bozhüyük KA, Zhou Q, Engel Y, Heinrich A, Pérez A, Bode HB (2017) Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Current Topics in Microbiology and Immunology 402: 55-79.

Brachmann AO, Forst S, Furgani GM, Fodor A, Bode HB (2006) Xenofuranones A and B: Phenylpyruvate dimers from Xenorhabdus szentirmaii. Journal of Natural Products 69(12): 1830-1832.

Burman M (1982) Neoplectana carpocapsae: a toxin production by axenic insect parasitic nematode. Nematologica 28: 62-70.
Challinor VL, Bode HB (2015) Bioactive natural products from novel microbial sources. Annals of the New York Academy of Sciences 1354: 82-97.
Chen G, Dunphy GB, Webster JM (1994) Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis . Biological Control 4(2): 157-162.
Del Valle EE, Lax P, Dueñas JR, Doucet ME (2013) Effects of insect cadavers infected by Heterorhabditis bacteriophora and Steinernema diaprepesi on Meloidogyne incognita parasitism in pepper and summer squash plants. Ciencia e Investigacion Agraria 40(1): 109-118.
Eischen FA, Diet A (1990) Improved culture techniques for mass rearing Galleria mellonella. Entomological News 101: 123-128.
Engel Y, Windhorst C, Lu X, Goodrich- Blair H, Bode HB (2017). The global regulators Lrp, LeuO, and HexA control secondary metabolism in entomopathogenic bacteria. Frontiers in Microbiology 8: 1-13.
Fallon DJ, Kaya HK, Gaugler R, Sipes BS (2004) Effect of Steinernema feltiae- Xenorhabdus bovienii insect pathogen complex on Meloidogyne javanica. Nematology 6(5): 671-680.
Ferreira TDF, Souza RM, Dolinski C (2011) Assessing the influence of the entomopathogenic nematode Heterorhabditis baujardi LPP7 (Rhabditina) on embryogenesis and hatching of the plant-parasitic nematode Meloidogyne mayaguensis (Tylenchina). Journal of Invertebrate Pathology 107(2): 164-167.
Grewal PS, Lewis EE, Venkatachari S (1999) Allelopathy: A possible mechanism of suppression of plant-parasitic nematodes by entomopathogenic nematodes. Nematology 1(7): 735–743.
Han R, Ehlers RV (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiology Ecology 35(3): 239-247.
Hu K, Li J, Webster JM (1995) Mortality of plant-parasitic nematodes caused by bacterial (Xenorhabdus spp. and Photorhabdus luminescens) culture media. Journal of Nematology 27: 502-503.
Hu K, Li J, Webster JM (1996) 3,5-Dihydroxy-4-isopropylstilbene: a selective nematicidal compound from the culture filtrate of Photorhabdus luminescens. Canadian Journal of Plant Pathology 18: 104. [Abstr.]
Hu K, Li J, Webster JM (1999) Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology 1(5): 457-469.
Hu K, Webster JM (2000) Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-Heterorhabditis infected Galleria mellonella larvae. FEMS Microbiology Letters 189(2): 219-223.
Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025-1028.
Ji D, Yi Y, Kang G, Choi Y, Kim P, Baek N, Kim Y (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiology Letters 239(2): 241-248.
Kaya HK, Stock SP (1997) Techniques in insect nematology, In: Lacey LA (Ed.), Manual of techniques in insect pathology biological techniques series. Academic Press, London. pp. 281-324.
Kronenwerth M, Dauth C, Kaiser M, Pemberton I, Bode HB (2014) Facile synthesis of cyclohexanediones and dialkylresorcinols – bioactive natural products from entomopathogenic bacteria. European Journal of Organic Chemistry 36: 8026–8028.
Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linar and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. Journal of Natural Products 71(6): 1047-1077.
Li J, Chen G, Webster JM (1995) Antimicrobial metabolites from a bacterial symbiont. Jurnal of Natural Products 58(7): 1081-1086.
Netscher C, Sikora RA (1990) Nematode parasites of vegetables, In: Luc M, Sikora RA, Bridge J (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, Oxon, UK. pp. 237-283.
Nyczepir PA, Thomas SH (2009) Currentand future management strategies in intensive crop production systems, In: Perry RN, Moens M, Starr JL (eds.), Root- knot nematodes. CABI publishers, London, UK. pp. 412- 435.
Orozco RA, Molnar I, Bode H, Stock SP (2016) Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. Sonorensis. Journal of Invertebrate Pathology 141: 45-52.

Reimer D, Pos KM, Thines M, Grün P, Bode HB (2011) A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nature Chemical Biology 7(12): 888–890.

Samaliev HY, Andreoglou FI, Elawad SA, Hague NGM, Gowen SR (2000) The nematicidal effects of the bacteria Pseudomonas oryzihabitans and Xenorhabdus nematophilus on the root-knot nematode Meloidogyne javanica. Nematology 2(5): 507-514.
Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Disease 64(1): 36-41.
Sasser JN, Carter CC (1985) Overview of the international Meloidogyne project, In: Barker KR, Carter CC, Sasser JN (Eds.), An advanced treatise in Meloidogyne. Vol. II, Methodology, North Carolina State University Graphics, Raleigh, USA. pp. 19-24.
Sasser JN, Freckmann DW (1987) A world perspective on nematology: The role of the society, In Veech JA, Dickson DW (Eds.), Vistas on nematology. Hyatlsville, Maryland, USA. pp. 7-14.
Thomas GM, Poinar Jr GO (1979) Xenorhabdus gen. nov., a genus of entomopathogenic and nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic Bacteriology 29(4): 352-360.
Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB (2017a). Photorhabdus- nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environmental Microbiology 19(1): 119-129.
Wang H, Liu Y, Dong H, Qin Li, Cong B, Li T (2011) Antibiotic activity of bacterial isolates associated with entomopathogenic nematodes. African Journal of microbiology Research 5(28): 5039-5045.