Formulation Development of Some Fluorescent Pseudomonads for Controlling of Meloidogyne incognita on Pistachio

Document Type : Complete paper

Authors

1 Associate Professor of Plant Protection, University of Vali-e-Asr Rafsanjan, Iran

2 Master of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Iran

3 Assistant Professor of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Iran

4 Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization Rafsanjan, Iran

Abstract

Plant growth which promotes rhizobacteria (PGPR) has a potential role in controlling root-knot disease. To reach the aim of this study, we used rhizobacteria replaced by chemicals to reduce this problem in Pistachio trees. Based on the previous studies, some strains with high ability were selected to reduce root knot severity. Three different formulations were prepared, using different carriers of materials named; wheat bran, dried apple and talc powder. we have used six individual strains of P. fluorescens and one combination of two strains (Vupf506+Vupf52). These formulations were tested to control M. incognita in Pistachio seedlings in the greenhouse condition. The wheat bran based treatments was effective in reducing disease by 32.7 to 88.9%. The bacteria survived longer in wheat bran-based and talc-based formulations than in dried apple-based formulation. The results of the study indicated that organic carriers can be efficiently used to improve the stability and efficiency of biocontrol-active microorganisms in controlling the Pistachio root-knot disease

Keywords

Main Subjects


Arangarasan, V., Palaniappan, SP., and Chelliah, S (1998). Inoculation effects of diazotrophs and phosphobacteria on rice. Indian journal of microbiology, 38: 111-112. 
Ardakani, S.S., Heydari, A., Khorasani, N., and Arjmandi, R (2010). Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against Damping-Off of cotton seedlings. Journal of Plant Pathology, 92 (1): 83-88.
Bridge, J., Pagge, S., and Jordan, S (1982). An improved method for staining nematodes in roots. Rep. Rothamst. exp. Stn for 1981, 1: 171.
Burr, T.J., and Caesar, A (1984). Beneficial plant bacteria. CRC Critical Reviews in Plant Science, 2: 1-20.
Dubeikovsky, A.N., Mordokhova, E.A., Kochethov, V.V., Polikarpova, F.Y., and Boronim, A.M (1993). Growth promotion of black current soft cutting by recombination strain Pseudomonas fluoresens BSP 53 a synthesizing an increased amount of indol-3-acetic. Soil Biology and Biochemistry, 25: 1277-1281.
Hagedorn, C., Gould, W.D., and Bardinelli, T.R (1993). Field evaluations of bacterial inoculants to control seedling disease pathogens on cotton. Plant Disease, 77: 278-282.
Haware, M.P., and Kannaiyan, J (1992). Seed transmission ofFusarium udumin pigeonpea and its control by seed-treatment fungicides.Seed Science Technology, 20: 597-601.
Hofte, M., Dong, Q., Kourambas, S., Krishnapillai, V., Sherratt, D., and Mergeay, M (1994). The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Molecular Microbiology, 14(5): 1011–1020.
Hussain, S., Ghaffar, A., and Aslam, M (1990). Biological Control of Macrophomina phaseolina Charcoal Rot of Sunflower and Mung Bean. Journal of Phytopathology, 130: 157-160.
Khatamidoost, Z., Jamali, S., Moradi, M., and Saberi Riseh, R (2014). Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on Pistachios. Biocontrol Science and Technology, 25(3): 291-301.
Khodakaramian, Gh., Heydary, A., and Balestra, G.M (2008). Evaluation of Pseudomonads bacterial isolates in biological control of citrus bacterial canker disease. International Journal of Agricultural Research, 3(4): 268-272.
Kloepper, J.W., and Schroth, M.N (1981). Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Journal of Phytopathology, 71: 590592.
Madani, M., Akhiani, A., Damadzadeh, M., and Kheiri, A (2012). Resistance evaluation of the pistachio rootstocks to Meloidogyne species in Iran. Journal of applied horticulture, 14(2): 134-138.
Maurhofer, M., Hase, C., Meuwly, P., Métraux, J.P., and Défago, G (1994). Induction of systemic resistance of tobacco to Tobacco Necrosis Virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Journal of Phytopathology, 84(2): 139-146.
Meena, B., Radhajeyalakshmi, R., Marimuthu, T., Vidyasekaran, P., and Velazhahan, R (2002). Biological control of groundnut late leaf spot and rust by seed and foliar applications of a powder formulation of Pseudomonas fluorescens. Biocontrol Science and Technology, 12(2): 195-204.
Meena, B (2010). Survival and effect of Pseudomonas fluorescens formulation developed with various carrier materials in the management of late leaf spot of groundnut. International journal of plant protection, 3(2): 200-202.
OʼSullivan, D.J., and OʼGara, F (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Molecular Microbiology Review, 56(4): 662-676.
Parke, J.L (1990). Root colonization by indigenous and introduced microorganisms. Pp. 33-42. In: D.L. Keister, and P.B. Cregan, (Eds). The rhizosphere and plant growth. The Netherlands Kluwer, Academic Publishers.
Papavizas, G.C (1985). Trichoderma and Gliocladium: Biology, ecology and potential for biocontrol. Annual Review of Phytopathology, 23: 23-54.
Prasad, R.D., and Rangeshwaran, R (2000). Effect of soil application of a granular formulation of Trichoderma harzianum on seed rot and damping-off of chickpea incited by Rhizoctonia solani, saprophytic growth of the pathogen and bioagent proliferation. Journal of Mycology and Plant Pathology, 30: 216-220.
Raju, N.S., Niranjana, S.R.I., Janardhana, G.R., Prakash, H.S., ShekarShetty H., and Mathur, S.B (1999). Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biological agents. Journal of Food Science and Agriculture, 79(2): 206-212.
Samiyappan, R., Jayashree, K., Raghuchandran, T., and Narasimhan V (1998). Fluorescent Pseudomonads for the management of sheath blight in rice. Indian farmers Digest, 31: 28-29.
Sharma, S.B., Mohiudin, M., Jain, K.C., and Renanandan, P (1994). Reaction of pigeon pea cultivars and gerplasm accessions to the root-knot nematode, Meloidogyne javanica. Journal of Nematology, 26: 644-652.
Song, F., and Goodman, R.M (2001). Molecular biology of disease resistance in rice.Physiology and Molecular Plant Pathology, 59: 1-11.
Sullivan, P (2004). Sustainable management of soil-borne plant disease: soil systems guide. National sustainable agriculture information service. Fayetteville, Arkansas (P.O. Box 3657, Fayetteville, AR 72702).
Suslow, T.V., and Schroth, M.N (1982). Rhizobacteria of sugar beets: Effects of seed application and root colonization on yield. Phytopathology, 72: 199-206.
Thompson, DC (1996). Evaluation of bacteria immunization: an alternative to pesticides for control of plant disease in greenhouse and field. p. 30-40. In: J. Bay Peterson, (Eds). The Biological Control of Plant Disease. Taiwan, Fertilizer Technology Centre.
Umesha, S., Dharmesh, S.M., Shetty, S.A., Krishnappa, M., and Shetty, HS (1998). Biocontrol of downy mildew disease of pearl-millet using Pseudomonas fluorescens. CropProtection, 17(5): 387-392.
Weller, D.M (1984). Distribution of a take- all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Applied Environment Microbiology, 48: 897-89.