Functional response of Amblyseius swirskii (Acari: Phytoseiidae) on untreated and Beauveria bassiana-treated Frankliniella occidentalis (Thysanoptera: Thripidae)

Document Type : Complete paper

Authors

1 University of Tehran

2 University of Vermont

Abstract

Thrips are important greenhouse pest that cause transmitting viruses in addition to direct damage. Functional response is an important factor in selection of natural enemies for the biological control of pests. The general predator Amblyseius swirskii and entomopathogenic fungus are the most important natural enemies of western flower thrips (WFT) Frankliniella occidentalis in most area. The functional response of the predatory mite, A. swirskii was examined on either untreated or Beauveria bassiana (isolate JEF-007) treated larvae of the WFT after three time intervals: 0, 24 and 36-h treatments. The functional response were studied in the laboratory condition (25±1 ºC, 70±10 % RH and photoperiod of 16:8 h (L: D)), and densities of 2, 4, 6, 8, 10, 12, 16 and 20 larvae per Petri dish, over 24h. The data were good fit to Rogers-II functional response model for all of untreated and B. bassiana-treated insects. Comparisons of the results of functional response parameters in different treatments indicated that the handling time on western flower trips 24 hours after infection had significantly different with the control but there were no significantly different among treatments control, 0 hour after infection and 36 hour after infection of the fungus.

Keywords

Main Subjects


Ahn JJ, Kim KW, Lee JH (2010) Functional response of Neoseiulus californicus (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae) on strawberry leaves. Journal of Applied Entomology 134: 98–104.
Allahyari H, Fard PA, Nozari, J (2004) Effects of host on functional response of offspring in two populations of Trissolcus grandison the sunn pest. Journal of Applied Entomology 128: 39-43.
Alves SB, Tamai MA, Rossi LS, Castiglioni E (2005) Beauveria bassiana pathogencity to the citrus rust mite Phyllocoptruta olivora. Experimental and Applied Acarology 37:117–122.
Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biological Control 52: 110-114.
Cédola CV, Sánchez NE, Liljesthröm GG (2001) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 25 819–831.
Emami M, Shishehbor  P Karimzadeh  Esfahani  J  (2014) Functional  response  of Anthocoris  nemoralis  (Hemiptera:  Anthocoridae)  to  the  pear  psyllaCacopsylla  pyricola Hemiptera: Psyllidae): effect of pear varieties. Journal of Crop Protection 3 (Supplementary): 597-609.
Espinosa PJ, Bielza P, Contreras J, Lacasa, A (2002) Field and laboratory selection of Frankliniella occidentalis (Pergande) for resistance to insecticides. Pest Management. Science 58: 920–927.
Farazmand A, Fathipour Y, Kamali K (2012) Functional response and mutual interference of Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology 38(5): 369-376.
Fathipour Y, Karimi M, Farazmand A, Talebi AA (2017) Age-specific functional response and predation rate of Amblyseius swirskii (Phytoseiidae) on two-spotted spider mite. Systematic & Applied Acarology 22(2): 159–169.
Fathipour Y, Hosseini A, Talebi AA, Moharramipour S (2006) Functional response and  mutual  interference of Diaeretiella rapae (Hymenoptera: Aphidiidae) on Brevicoryne brassicae (Homoptera: Aphididae). Entomologica Fennica 17: 90–97.
Gitonga LM, Overholt WA, Lohr B, Magambo JK, Mueke JM (2002) Functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Megalurothrips sjostedti (Thysanoptera: Thripidae). BiologicalControl 24: 1-6.
Gorji MK, Fathipour Y, Kamali K (2009) The effect of temperature on the functional response and prey consumption of Phytoseius plumifer (Acari: Phytoseiidae) on the two-spotted spider mite. Acarina, 17: 231–237.
Gotoh T, Nozawa, M, Yamaguchi K (2004) Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Applied Entomology and Zoology 39(1): 97–105.
Hassell MP (1978) The dynamics of arteropod peridator-pery system. Princton University, Perincton, New Jersy. 237 pp.
Holling CS (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 91: 385-398.
Jacobson RJ, Chandler D, Fenlon J, Russell KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phyotseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripipdae) on cucumber plants. Biocontrol Science and Technology 11:391-400.
Jalalipour R, Sahragard, A, Karimi-Malati A (2014) Effect of different foraging periods on  the  functional  response  of  Aphidoletes  aphidimyza  (Diptera:  Cecidomyiidae)  at  different  densities of Aphis craccivora. Journal of Crop Protection 3(2): 283-293.
Jamshidnia A, Kharazi-Pakdel A, Allahyari H, Soleymannejadian E (2010). Functional response of Telenomus busseolae (Hymenoptera: Scelionidae) an egg parasitoid of the sugarcane stem borer, Sesamia nonagrioides (Lepidoptera: Noctuidae) at different temperatures. Biocontrol Science and Technology 20: 631-640.
Juliano SA (1993). Nonlinear curve fitting: predation and functional response curves. In Design and Analysis of Ecological Experiments, S.M. Scheiner, and J. Gurevitch, (Eds), Chapman and Hall, Newyork. 159-182 pp.
Lee HS, Gillespie DR (2011) Life tables development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Experimental and Applied Acarology 53(1): 17–27.
Lewis T (1997) Major crops infested by thrips with main symptoms and predominant injurious species (Appendix II), pp. 675–709 In T. Lewis [ed.], Thrips as crop pests. CAB International, New York.
Messelink GJ, Van Steenpaal EF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51: 753-768.
Messina FJ, Hanks JB (1998) Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). Environmental Entomology 27: 1196-1202.
Midthassel, A, Leather SR, Wright DJ, Baxter IH (2016). Comptibility of Amblyseius swirskii and Beauveria bassiana: two potentially complimentary biocontrol agents. Biocontrol 61: 437-447.
Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. BioControl 58: 369–377.
Nomikou M, Janssen, A, Schraag R, Sabelis, M.W (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology 25(4): 271–291.
Omoto C, Dennehy TJ, McCoy CW, Crane SE, Long JW (1994) Detection and characterization of the interpopulation variation of citrus rust mite (Acari: Eriophyidae) resistance to dicofol in Florida citrus. Journal of Economic Entomology 87:566–572.
Pervez A, Omkar (2005) Functional response of coccindellid predators: An illustration of a logistic approach. Journal of Insect Science 5: 1-5.
Rashki M, Kharazi-pakdel A, Allahyari H, van Alphen JJM (2009) Interaction among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid,Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biological Control 50:324–328
Robb KL, Parrella MP (1991) Western flower thrips, a serious pest of floricultural crops. General Technical Report NE-147: 343-358.
Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Science and Technology 10:737–752.
Seiedy  M,  Saboori  A, Allahyari H, Talaei-Hassanloui  R,  Tork M (2012). Functional Response of Phytoseiulus persimilis (Acari: Phytoseiidae) on Untreated and Beauveria bassiana- Treated Adults of Tetranychus urticae (Acari: Tetranychidae). Journal of Insect Behavior 25:543–553.
Seiedy M, Tork M, Deyhim, F (2015) Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Systematic and Applied Acarology 20(3):241-250.
Shipp JL, whitfield GH (1991). Functional response of the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology 20 (2): 694-699.
Soleymani S, Hakimitabar, M, Seiedy M (2016) Prey preference of predatory mite Amblyseius swirskii (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) and Bemisia tabaci (Hemiptera: Aleyrodidae). Biocontrol Science and Technology 26(4): 562–569.
Solomon ME (1949) The natural control of animal population. Journal of Animal Ecology 18: 1-35.
Tal C, Coll M, Weibtraub P (2007) Biological control of Polyphagotarsonemus latusby the predaceous mite Amblyseius swirskii. IOBC/wprs Bulletin 30(5): 111–115.
Tommasini MG, Maini S (1995) Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. Wageningen Agricultural University Papers 95–1:1–42.
Ugine TA, Wraight SP, Brownbridge M, Sanderson JP (2005a). Development of a novel bioassay for estimation of median lethal concentrations (LC50) and doses (LD50) of the entomopathogenic fungus Beauveria bassiana against western flower thrips, Frankliniella occidentalis. Journal of Invertebrate Pathology 89:210-218.
Ugine TA, Wraight SP, Sanderson JP (2005b) Acquisition of lethal doses of Beauveria bassiana conidia by western flower thrips, Frankliniella occidentalis, exposed to foliar spray residues of formulated and unformulated conidia. Journal of Invertebrate Pathology 90:10-23.
Van Houten, Y. M., Van Stratum P (1995). Control of western flower thrips on sweet pepper in winter with Amblyseius cucumeris and A. degerenas. In: Thrips biology and management, (eds.) Parker, B. L., Skinner, M. and Lewis, T., pp: 245-248, New York: Plenum Press, U.S.A.
Wekesa VW, Maniania NK, Knapp M, Boga HL (2005) pathogenicity of Beauveria bassiana and Metarhizium to the tobacco spider mite, Tetranychus evansi. Experimental and Applied Acarology 36: 41-50.
Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis and onion thrips, Thrips tabaci, for the predatory mite, Amblyseius swirskii.Biocontrol Science and Technology 18(6): 541–550.
Wright JE, Kennedy GG (1996) A new biological product for control of major greenhouse pests. In:Proceeding of Brighton Crop Protection Conference- Pest & Diseases. 3: 885–892.
Xiao Y, Fadamiro HY (2010) Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biological Control 53: 345–352.
Xiao Y, Osborne LS, Chen J, McKenzie CL (2013) Functional responses and prey-stage preferences of a predatory gall midge and two predacious mites with two spotted spider mites, Tetranychus urticae, as host. Journal of Insect Science 13: 1–12.
Xu X, Enkegaard A (2010) Prey preference of the predatory mite, Amblyseius swirskii between First Instar Western Flower Thrips Frankliniella occidentalis and nymphs of the twospotted Spider Mite Tetranychus urticae. Journal of Insect Science 10(149): 1–11.
Zamani AA, Talebi AA, Fathipour Y, Baniameri V (2006) Temperature-dependent functional  response  of  two  aphid  parasitoids,  Aphidius  colemani and  Aphidius  matricariae (Hymenoptera: Aphidiidae), on the cotton Aphid. Journal of Pest Science 79: 183-188.
Zhao GY, Liu W, Knowles CO (1994) Mechanisms associated with diazinon resistance in western flower thrips. Pesticide Biochemistry and Physiology 49: 13-23.