Efficacy of a Native Entomophilic Nematode Isolate, Acrobeloides maximus, against Leopard Moth Borer Larvae under Laboratory Conditions

Document Type : Complete paper

Authors

1 Department of Plant Protection, School of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Plant Protection, Faculty of Agricultura, Ferdowsi University of Mashhad, Mashhad, Iran

3 Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

Abstract

The objective of this study was to evaluate the biological traits of the native isolate (K29) of entomopathogenic nematode (EPN), Acrobeloides maximus, from Kerman region against the larvae of Zeuzera pyrina L. (Lepidoptera: Cossidae) the serious pest of walnut trees in Iran. Main purposes were determining the pathogenicity intensities in plate and branch, relationship between host body size and susceptibility to EPNs and reproduction and penetration potential of EPN. Plate assays were performed using a range of EPN concentrations (5, 10, 20, 50 and 100 infective juveniles (IJs) per larva) in laboratory. The LC50 of A. maximus K29 was 12.1 IJs larva-1 against Z. pyrina larvae after 72 h. This EPN caused high insect mortality in branch experiments and dissection of cadavers confirmed nematode infection. The addressing relation between host body size and susceptibility of larvae to nematode showed higher mortality rates in the larger larvae after exposing to A. maximus K29 isolate. The results of the penetration and reproduction assays indicated that A. maximus K29 was able to successfully penetrate and reproduce in the haemocoels of Z. pyrina and G. mellonella larvae. The highest reproduction was recorded at 20 IJs larva-1 in Z. pyrina (30560.5±559.3 IJs). In conclusion, our findings demonstrate that A. maximus K29, is virulent to Z. pyrina larvae and it causes infection and successfully recycles in this pest. Notwithstanding the effectiveness of this pathogenic agent on Z. pyrina larvae, further studies are required for better track of infection of treated larvae within the walnut tree trunks.

Highlights

نتایج این پژوهش اثبات کرد که جدایه­ بومی نماتود بیمارگر K29 که برای اولین بار از ایران گزارش می­شود، باوجود آزاد­زی بودن و رفتار پارازیتی، دارای پتانسیل قابل توجهی جهت کاربرد علیه لارو­های کرم خراط دارد. این نماتود بیمارگر بومی در آزمون­های مختلف پتری دیش و روی شاخه قادر به ایجاد بیماریزایی و تکثیر در لارو­های کرم خراط بود. نظر به مشاهدات انجام شده در خصوص زهر­آگینی بالای این جدایه­ بومی از نماتود­های بیمارگر بر روی لارو­های کرم خراط، پتانسیل نفوذ و تولید­مثل آن در بدن آفت و همچنین توانایی این جدایه­ بومی در ورود و کشتن لارو­های کرم خراط درون دالان­های لاروی آفت در شاخه­های درخت گردو از یک سو، و نیز سازگاری نماتود­های بیمارگر با زیستگاه­های مخفیانه لارو­های کرم خراط از سوی دیگر، در میان سایر عوامل کنترل بیولوژیک، این عامل کنترل زیستی می­تواند به عنوان یک عامل کنترل بیولوژیک موثر جهت کاربرد در قالب برنامه­های مدیریت کنترل این آفت مهم اقتصادی در باغات گردو مورد توجه قرار گیرد.

Keywords

Main Subjects


Abbott W (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.
Abdel-Kawy A, El-Bishry M, El-Kifl T (1992) Controlling the leopard moth borer, Zeuzera pyrina by three entomopathogenic nematode species in the field. Bulletin of the Faculty of Agriculture of Cairo University 121: 769–780.
Alford DV (2007) Pest of fruits crops, a color handbook. Academic Press, USA.
Amirghasemi M (2006) Identification of Walnut and its properties. Yas Publication, IRAN.
Ashtari M, Karimi J, Rezapanah MR, Hassani-kakhki M (2011) Biocontrol of leopard moth, Zeuzera pyrina L. (Lep.: Cossidae) using entomopathogenic nematodes in Iran. IOBC/wprs Bulletin 66: 333 –335.
Avilla J, Bosh D (2001) Mass trapping and mating disruption for the control of leopard moth and apple clear wing moth. IOBC/wprs Bulletin 24: 167-172.
Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 21: 31-42.
Campos-Herrera R, Gutiérrez C (2009) A laboratory study on the activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain against horticultural insect pests. Journal of Pest Science 82: 305-309.
Canhilal R, Carner GR (2006) Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in South Carolina. Journal of Agricultural and Urban Entomology 23: 159-166.
Cottrell T, Shapiro-Ilan D, Horton D,  Mizell III R (2011) Laboratory virulence and orchard efficacy of entomopathogenic nematodes against the lesser peachtree borer (Lepidoptera: Sesiidae). Journal of Economic Entomology 104: 47-53.
Ebrahimi A, Zarei A, Fatahi R, Ghasemi Varnamkhasti M (2009) Study on some morphological and physical attributes of walnut used in mass models. Scientia Horticulturae 121: 490–494.
Ebssa L, Koppenhöfer AM (2011) Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Pest Management Science 68: 947-957.
Fuxa JR, Richter AR, Silva FA (1988) Effect of host age and nematode strain on susceptibility of Spodoptera frugiperda to Steinernema feltiae. Journal of Nematology 20: 91–95.
Gatwick J (1992) Crop pests in the UK. Collected edition of MAFF leaflets. Chapman & Hall, UK.
Gaugler R (1988) Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment 24: 351-360.
Glazer I (1992) Invasion rate as a measure of infectivity of steinernematid and heterorhabditid nematodes to insects. Journal of Invertebrate Pathology 59: 90–94.
Glazer I, Alekseev E, Samish M (2001) Factors affecting the virulence of entomopathogenic nematodes to engorged female Boophilus annulatus ticks. Journal of Parasitology 87: 808-812.
Harvey CD, Alameen KM, Griffin CT (2012) The impact of entomopathogenic nematodes on a non-target, service-providing longhorn beetle is limited by targeted application when controlling forestry pest Hylobius abietis. Biological Control 62: 173–182.
Hegazi E, Khafagi WE, Konstantopoulou M, Raptopoulos D, Tawfik H, Abd El-aziz GM, Abd El-rahman SM, Atwa A, Aggamy E, Showeil S (2009) Efficient Mass-trapping method as an alternative tactic for suppressing populations of leopard moth (Lepidoptera: Cossidae). Ecology and Population Biology 102: 809-818.
Hodson AK, Friedman ML, Wu LN, Lewis EE (2011) European earwig (Forficula auricularia) as a novel host for the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology 107: 60–64.
Kaya HK, Stock S (1997) Techniques in insect nematology. Manual of techniques in insect pathology 1: Academic Press 281-324.
Khatri-Chhetri HB, Timsina GP, Manandhar HK, Moens M (2011) Potential of Nepalese entomopathogenic nematodes as biocontrol agents against Holotrichia longipennis Blanch. (Coleoptera: Scarabaeidae). Journal of Pest Science 84: 457–469.
Koppenhöfer AM (2007) Nematodes, In: Lacey LA, Kaya HK (ed.), Field manual of techniques in invertebrate pathology application and evaluation of pathogens for control of insects and other invertebrate pests. Springer, USA. pp. 249-266.
Lacey LA, Unruh TR (1998) Entomopathogenic nematodes for control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae): effect of nematode species, concentration, temperature, and humidity. Biological Control 13: 190-197.
Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology 44: 218-225.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132: 1–41.
Langström B, Heliövaara K, Moraal L, Turcani M, Viitasaari M, Ylioja T (2004) Non-coleopteran insects. In: Lieutier F (ed.) Bark and wood boring insects in living trees in Europe, a Synthesis. Kluwer Academic Publishers, The Netherlands. pp. 501–538.
Lewis EE, Gaugler R, Harrison R (1993) Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology 71: 765 –769.
Mehrabi Boshrabadi H, Villano R, Fleming E (2008) Technical efficiency and environmental-technological gaps in wheat production in Kerman province of Iran: A meta-frontier analysis. Agricultural Economics 38: 67-76.
Miller LC, Barbercheck ME (2001) Interaction between endemic and introduced entomopathogenic nematodes in conventional-till and no-till corn. Biological Control 22: 235-245.
Myers JH (1988) Can a general hypothesis explain population cycles of forest Lepidoptera? Advances in Ecology Research 18: 179-242.
Nashnosh IM, Baraka MM, Ismai W, Maayuf M (1993) Laboratory evaluation of natural and commercial preparations of entomopathogenic fungi and bacteria on the leopard moth, Zeuzera pyrina L. (Lepidoptera; Cossidae). Arab Journal of Plant Protection 11: 73-76.
Nielsen O, Philipsen H (2004) Recycling of entomopathogenic nematodes in Delia radicum and in other insects from cruciferous crops. BioControl 49: 285–294.
Pasqualini E, Antropoli A, Faccioli B (1992) Attractant performance of a synthetic sex pheromone for Zeuzera pyrina L. (Lepidoptera; Cossidae). Bollettino dell'Istituto di Entomologia "Guido Grandi", Universita degli Studi Bologna 46: 101-108.
Poinar JG, Grewal P (2012) History of entomopathogenic nematology. Journal of nematology 44: 153-161.
Salame L, Glazer I, Miqaia N, Chkhubianishvili T (2010) Characterization of populations of entomopathogenic nematodes isolated at diverse sites across Irland. Phytoparasitica 38: 39-52.
Salari E, Karimi J, Sadeghi-Nameghi H, Hosseini M (2015) Efficacy of two entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae for control of the leopard moth borer Zeuzera pyrina (Lepidoptera: Cossidae) larvae under laboratory conditions. Biocontrol Science and Technology 25: 260-275.
Sammour EA, Saleh ME (1996) Combination of entomopathogenic nematodes and insecticides for controlling of apple borer, Zeuzera pyrina L. (Lepidoptera: Cossidae). Journal of the Association of Arab Universities for Basic and Applied Sciences 5: 369-380.
Siahnouri Z, Sadeghian M, Salehisormghi M, Qomi M (2013) Determination of Iranian Walnut and Pistachio Mineral Contents. Journal of Basic and Applied Scientific Research 3: 217-220.
Shamseldean M, Hasanain S, Rezk M (2009) Virulence of entomopathogenic nematodes against lepidopterous pests of horticultural crops in Egypt. In: the 4th Conference on recent technologies in Agriculture, 3-5 Nov., Cairo University, Giza, Egypt. pp. 74–84.
Shapiro-Ilan D, Cottrell T, Mizell III RF, Horton DL, Zaid A (2014) Field suppression of the peachtree borer, Synanthedon exitiosa, using Steinernema carpocapsae: Effects of irrigation, a sprayable gel and application method. Biological Control 82: 7-12.
Sharifi Sh, Karimi J, Hosseini M, Rezapanah MR (2014) Efficacy of two entomopathogenic nematode species as potential biocontrol agents against the rosaceae longhorned beetle, Osphranteria coerulescens under laboratory conditions. Nematology 16: 729-737.
Shields EJ, Testa A, Miller JM, Flanders KL (1999) Field efficacy and persistence of the entomopathogenic nematodes Heterorhabditis bacteriophora ‘Oswego’ and H. bacteriophora ‘NC’ on Alfalfa snout beetle larvae (Coleoptera: Curculionidae). Environmental Entomology 28:128–136.
Smits PH (1996) Post-application persistence of entomopathogenic nematodes. Biocontrol Science and Technology 6: 379–387.
Susurluk A, Ehlers RU (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53: 627–641.