A, Houcine B, Halima MD, Imane Z, Djamal Eddine S, Abdallah M, Daoudi C (2013) Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian
Linum usitatissimum L. seeds against toxigenic
Aspergillus. Asian Pac J Trop Biomed 3: 443-448.
Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology 7: 356-364.
Aist JR (1976) Papillae and related wound plugs of plant cells. Annual Review of Phytopathogy 14: 145-163.
Alexander D, Goodman, RM, Gut-Rella M, Glascock C, Weymann K, Friedrich, L, Maddox D, Ahl-Goy P, Luntz T, Ward E, Ryals J (1993) Increased tolerance to 2 oomycete pathogens in transgenic tobacco expressing pathogenesis related protein-1a. Procceding of National Academic Science 90: 7327-7331.
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. AnnualReview of Plant Biology 55: 373-99
Bayles CJ, Ghemawat MS, Aist JR (1990) Inhibition by 2-deoxy-D-glucose of callose formation. papilla deposition and resistance to powdery mildew in an ml-o barley mutant. Physiol. Mol. Plant Pathology 36: 63-72.
Beckman CH, Mueller WC, Teuier BJ, Harrison NA (1982) Recognition and callose deposition in response to vascular. infection in fusa rium wilt-resistant or susceptible tomato plants. Physio1. Plant Pathology 20:1-10.
Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814.
Chuanfu A, Zhonglin M (2012) Not-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS one 7: 1-12.
Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defense responses. Annual Review of Phytopathology 32: 479-501.
Dow M, Newman MA, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annual Review of Phytopathology38: 241-261
Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal 18: 265-276.
Felix G, Grosskopf DG, Regenass M, Basse CW, Boller T (1991) Elicitor induced ethylene biosynthesis in tomato cells. Plant Physiology 97: 19-25.
Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Procceding of National Academic Science USA 88:8831-4.
Felix G., Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells. Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal 4: 307-316
Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Jounal18: 277-84.
Granado J, Felix G, Boller T (1995) Perception of fungal sterols in plants: subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells. The Plant Physiology 107: 485-490.
Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Procceding of National Academic Science USA 104: 12217-12222.
Ito Y, Kaku H, Shibuya N (1997) Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. The Plant Journal 12: 347-356.
Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Procceding of National Academic Science USA 94:4800-5.
Jaffe MJ, Leopoid AC (1984) Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose. Planta 161: 20-26.
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323-329.
Katagiri F, Thilmony R, He SY (2002) The Arabidopsis Thaliana-Pseudomonas syringae Interaction. The Arabidopsis Book, Rockville, MD, USA: American Society of Plant Biologists 11-35.
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16: 3496-507
Niderman T, Genetet I, Bruyère T, Gees R, Stinzi A, Legrand M, Fritig B, Mösinger E (1995) Pathogenesis-related PR-1 proteins are antifungal: Isolation and characterization of three 14 kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology 108: 17-22
Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunological reviews 198: 249-266.
Nuernberger T, Lipka V (2005) Non‐host resistance in plants: new insights into an old phenomenon. Molecular plant pathology 6: 335-345.
Sacks WR, Ferreira P, Hahlbrock K, Jabs T, Nürnberger T (1993) Elicitor recognition and intracellular signal transduction in plant defense. In: Nester EW, Verma DPS, editors. Advances in molecular genetics of plant-microbe interactions. Dordrecht: Kluwer, p. 485-95.
Slanghellini ME, Rasmussen SL, Vandemark GJ (1993) Relationship of callose deposition to resistance of lelluce to Plasmopara lactucae. Phytopathology 83: 1498-1501.
Stanghellini ME, Aragaki M (1966) Relation of periderm formation and callose deposi tion to anthracnose resistance in papaya fruit. Phytopathology 56: 444-450.
Thürig B, Felix G, Binder A, Boller T, Tamm L (2006) An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signalling pathways. Physiology and Molecular Plant Pathology67: 180-193.
Underwood WR (2006) Innate immunity in Arabidopsis thaliana: induction and suppression by Pseudomonas syringae. A dissertation submitted to Michigan State University.
Zimmermann S, Nurnberger T, Frachisse J-M,Wirtz W, Guern J, Hedrich R (1997) Receptor-mediated activation of a plant Ca2C-permeable ion channel involved in pathogen defense. Procceding of National Academic Science USA, 94: 2751-5.
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760.
Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Fürst U, Mueller K, Felix G (2013) The Receptor-like Protein ReMAX of Arabidopsis thaliana Detects the novel MAMP emax from Xanthomonas. Plant cell25: 2330-2340.